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Abstract
With the advent of network function virtualization
(NFV), outsourcing network processing to the cloud is
growing in popularity amongst enterprises and organiza-
tions. Such outsourcing, however, poses a threat to the
security of the client’s traffic because the cloud is notori-
ously susceptible to attacks.

We present SafeBricks, a system that shields generic
network functions (NFs) from an untrusted cloud.
SafeBricks ensures that only encrypted traffic is exposed
to the cloud provider, and preserves the integrity of
both traffic and the NFs. At the same time, it enables
clients to reduce their trust in NF implementations by
enforcing least privilege across NFs deployed in a chain.
SafeBricks does not require changes to TLS, and safe-
guards the interests of NF vendors as well by shielding
NF code and rulesets from both clients and the cloud.
To achieve its aims, SafeBricks leverages a combination
of hardware enclaves and language-based enforcement.
SafeBricks is practical, and its overheads range between
∼0–15% across applications.

1 Introduction
Modern networks consist of a wide range of appli-
ances that implement advanced network functions be-
yond merely forwarding packets, such as scanning for
security issues (e.g., firewalls, IDSes) or improving per-
formance (e.g., WAN optimizers, web caches). Tradi-
tionally, these network functions (or NFs) have been de-
ployed as dedicated hardware devices. In recent years,
however, both industry and academia have proposed the
replacement of the devices with software implementa-
tions running in virtual machines [55,62], a model called
Network Function Virtualization (NFV). Inevitably, the
advent of NFV has spurred the growth of a new industry
wherein third-parties offer traffic processing capabilities
as a cloud service to customers [4, 51, 62, 79]. Such a
service model enables enterprises to outsource NFs from
their networks entirely to the third-party service, bring-
ing the benefits of cloud computing and reducing costs.

However, outsourcing NFs to the cloud poses new
challenges to enterprise networks—security.
Need to protect traffic from the cloud. By allowing the
cloud provider to process enterprise traffic, enterprises
end up granting to the cloud the ability to see their sensi-
tive traffic and tamper with NF processing. While the
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Figure 1: Model for outsourced NFs.

cloud itself might be a benign entity, it is vulnerable
to hackers [56], subpoenas [24, 45, 75], and insider at-
tacks [10, 54, 77]. This is doubly worrisome because not
only does network traffic contain sensitive information,
but some NFs are also designed to protect enterprises
against intrusions which an attacker could try to disrupt.
Need to protect traffic from NF. What complicates mat-
ters further is that often, an enterprise must also trust
another party with its traffic: NF vendors. This is the
case when enterprises procure proprietary NF implemen-
tations and rulesets from NF vendors [8, 22, 51] instead
of using their own, as shown in Figure 1. While such
NFs typically need access only to specific portions of the
traffic (e.g., IP firewalls only need read access to packet
headers), the enterprise by default entrusts the NFs with
both read/write access over entire packets.
Need to protect NF source code. This model threat-
ens the security of the NF vendors as well, who have a
business interest in maintaining the privacy of their code
and rulesets (often baked into the source code) from both
the cloud and the enterprise. NFs have traditionally been
shipped as hardware devices, so being shipped as soft-
ware now exposes them further to untrusted platforms
(e.g., it is possible to reverse binaries).

The question is: how can we design an NF processing
framework that meets all these security goals?

There has been little prior work in this space, con-
sisting of mostly two approaches. Cryptographic ap-
proaches such as BlindBox [63] and Embark [38] are sig-
nificantly limited in functionality, supporting only simple
functions such as = and >. They are unable to support
more sophisticated operations such as regular expres-
sions (needed in common NFs such as intrusion detection
systems) or process custom NF code. Least-privilege ap-
proaches such as mcTLS [48] aim to give each NF access
to only part of the packet and are designed for hardware
middleboxes; however, when used in the cloud setting,
they provide weak guarantees because the cloud receives
the union of the permissions of all middleboxes, which
often, is everything. Neither of these approaches protects



the NF source code, and both require significant changes
to TLS, which is an impediment to adoption.

We present SafeBricks, a system for outsourcing NFs
that provides protection with respect to the three security
needs above. SafeBricks addresses the discussed lim-
itations of prior work by supporting generic NF func-
tionality with significantly stronger security guarantees,
without requiring changes to TLS. It builds upon Net-
Bricks [53], a framework for building and executing ar-
bitrary NFs that uses a safe language and runtime, Rust.

To overcome the limited functionality of crypto-
graphic approaches, SafeBricks shields [9] traffic pro-
cessing from the cloud by executing the NFs within hard-
ware enclaves (e.g., Intel SGX [43]). This approach
promises that neither an administrator with root privi-
leges nor a compromised operating system can observe
enclave-protected data in unencrypted form, or tamper
with the enclave’s execution. Enclaves have already been
used to shield general-purpose computation from the
cloud provider [3, 9, 30, 59]. Applying them to network
processing is a natural next step, as recent proposals have
pointed out (see §11).

While this idea is simple, designing a system that pro-
vides protection with respect to the three security goals
above, and simultaneously maintains good performance,
is far more challenging.

First, general-purpose approaches result in a large
trusted computing base (TCB) inside the enclaves (up to
millions of LoC), any vulnerability in which can result
in information leakage. In SafeBricks, we investigate
how to partition the code stack of NF applications (from
packet capture to processing) and choose a boundary that
reduces the code within the trusted domain without com-
promising security.

Second, partitioning an application is likely to result
in transitions between enclave and non-enclave code.
These transitions are expensive, introducing a high run-
time overhead due to the cost of saving/restoring the state
of the secure environment. Consequently, there is a ten-
sion between TCB size and the overall performance of
the application: the lesser code the enclave contains, the
more transitions it is likely to make to non-enclave code.
In SafeBricks, we address these challenges simultane-
ously by developing an architecture that leverages shared
memory and splits computation across enclave and non-
enclave threads (while verifying the work of the non-
enclave threads) without performing transitions.

Third, NFV deployments typically comprise multiple
NFs running in a chain, isolated via VMs or contain-
ers for safety. In our setting, the straightforward way of
achieving this isolation would be to deploy each NF in
a separate enclave. However, as we discuss in §6, such
an architecture can result in a system that is ∼2–16×
slower than the baseline. Instead, SafeBricks supports

chains of NFs within the same enclave. To isolate them,
SafeBricks leverages the semantics of the Rust language.

Nevertheless, this strategy introduces a new difficulty:
all NFs must be assembled using a trusted compiler.
Though the client enterprise is the natural site for build-
ing the NFs safely, doing so would leak the source code
of the NFs to the client, which is undesirable for the NF
vendors. To address this challenge, SafeBricks runs in
an enclave at the cloud a meta-functionality: a compiler
that creates an encrypted binary, and a loader that runs
this binary in a separate enclave. Using the remote attes-
tation feature of hardware enclaves, both the NF vendors
and the client can verify that the agreed-upon compiler
and loader are running in an enclave, before the vendors
share the NF code and the client shares data and traffic.

Finally, none of the above satisfies our requirement
for enforcing least privilege across NFs: each NF still
has access to entire packets. SafeBricks enforces least
privilege by (i) exposing an API to the client for spec-
ifying the privileges of each NF, and (ii) ensuring that
the SafeBricks framework mediates all NF accesses to
packets, both reads and writes. To enforce the latter,
SafeBricks leverages the safety guarantees of Rust.

We evaluate SafeBricks across four different NF ap-
plications using both synthetic and real traffic. Our eval-
uation shows that the performance impact of SafeBricks
is reasonable, ranging between ∼0–15% across NFs.

2 Model and Threat Model
As shown in Figure 1, there are four types of parties in
our setting: (1) a cloud provider that hosts the outsourced
NFs; (2) a client enterprise outsourcing its traffic pro-
cessing to the cloud; (3) two endpoints that communi-
cate over the network, at least one of which is within the
enterprise; and (4) NF vendors that supply the code and
rulesets for network functions.

The client enterprise contains a gateway (as shown
in Figure 2) which is trusted. The endpoints are trusted
only with their communication.

The core of SafeBricks’s design builds on the abstract
notion of a hardware enclave. Our implementation uses
Intel SGX [43], a popular hardware enclave, but few de-
sign decisions are tailored to SGX. We provide some rel-
evant background on hardware enclaves, and then define
the threat models for the cloud and the NF vendors.

2.1 Hardware enclaves
Hardware enclaves aim to provide an isolated execution
environment that preserves the confidentiality and in-
tegrity of code and data within the enclave. An important
feature of hardware enclaves is remote attestation.
Remote attestation. This procedure allows a remote
client system to cryptographically verify that specific
software has been securely loaded into an enclave, us-



ing CPU-based attestation [2]. When a client requests
remote attestation, the enclave generates a report signed
by the processor that contains a hash measurement of the
enclave. As part of the attestation, the enclave can also
bootstrap a secure channel with the client by generating
a public key and returning it with the signed report.

Intel SGX. Intel Software Guard Extensions [43] is a set
of ISA extensions that enables the creation of hardware
enclaves. Software running outside the enclave, includ-
ing privileged software such as the kernel or hypervisor,
cannot access or tamper with enclave memory.

2.2 Threat model for the cloud and enclaves
Our threat model for the cloud provider is similar to prior
works [3,9,59] that build on hardware enclaves. Enclaves
strive to provide an abstract security guarantee so that
systems like SafeBricks can build on them in a black-
box manner; however, current implementations do not
yet fully achieve this guarantee as we discuss below.
Abstract enclave assumption. The attacker cannot ob-
serve any information about the protected code and data
in the enclave, and the remote attestation procedure es-
tablishes a secure connection between the correct parties
and loads the desired code into the enclave.
Attacker capabilities. Except the out-of-scope attacks
described below, we consider an attacker that can com-
promise the software stack of the cloud provider outside
the enclave, which includes privileged software such as
the hypervisor and kernel. In particular, whenever the
enclave exits or invokes code outside the enclave, the at-
tacker can instead run arbitrary code and/or respond with
arbitrary data to the enclave. For example, the OS can
mount an Iago attack [15] and respond incorrectly to sys-
tem calls. Note that this threat model implies that the
attacker can observe communication between hardware
enclaves as well as communication on the network.
Out-of-scope attacks. In short, all attacks that violate
the abstract enclave assumption above are out of scope
for SafeBricks. For example, we consider as out of scope
all hardware and side-channel attacks, as well as assume
that the enclave manufacturer (e.g., Intel) is trusted. Intel
SGX’s current implementation does not fully achieve the
enclave assumption above because it suffers from side-
channel attacks, including those based on access pattern
leakage amongst others [12, 14, 17, 26, 28, 39, 47, 60, 73,
74]. While these are important issues with SGX, we
treat them as out of scope for SafeBricks because so-
lutions to these are orthogonal and complementary to
our contribution here. Recently, a number of solutions
have been proposed for solving or mitigating these at-
tacks [16, 18, 27, 65, 66].

2.3 Threat model for network functions
Each NF is trusted only with the permissions given to
it by the enterprise for specific packet fields. That is,

if the enterprise gives a NAT read/write permissions for
the IP header, the NF is trusted to not leak the header
to unauthorized entities and to modify it correctly. At
the same time, if the NAT attempts to access the packet
payload, then SafeBricks must prevent it from doing so.

3 SafeBricks: End-to-end Architecture
APLOMB [62] discusses in detail the architecture for
outsourcing NF processing to the cloud by redirecting
client traffic, as well as the merits of this architecture.
Here, we focus on how SafeBricks enhances this archi-
tecture with protection against cloud attackers and TLS
compatibility, while maintaining performance.

SafeBricks supports three typical architectures consid-
ered in the cloud outsourcing model [38, 62], as shown
in Figure 2. These architectures have different merits or
constraints, and are useful for different cases.

Let S be the source endpoint, G the client gateway, CP
the cloud provider running NFs using SafeBricks (SB),
and D the destination endpoint. Let G1 be the gateway
near the source, and G2 be the gateway near the destina-
tion. Note that in the Direct architecture, an enclave in
the cloud plays the role of G2, and in the Bounce archi-
tecture, a single gateway plays both G1 and G2. CP runs
hardware enclaves; code and data are decrypted inside
enclaves, but remain encrypted outside. D could either
be an external site or an endpoint in another enterprise.
1. Bounce: In the bounce architecture, SB tunnels pro-

cessed traffic to G over the secure channel. G then
forwards the processed traffic to the destination. The
response from D is similarly redirected by G to SB
before forwarding it to S. The bounce setup is the
simplest in that it does not place any added burden on
SB or D from a functionality and security perspective.
However, it inflates the latency between S and D as a
result of bouncing the processed traffic to G.

2. Direct: The direct architecture alleviates the latency
added by the bounce setup. SB directly forwards
the enterprise traffic to D after processing it with-
out bouncing it off the gateway. However, this setup
comes at the cost of security: since there is no se-
cure channel between SB and D over which traffic can
be tunneled, SB must necessarily send the processed
packets to D in the clear, revealing the headers to CP.
If S and D use TLS, CP will not see the payload.

3. Enterprise-to-enterprise: If S and D belong to the
same enterprise or to enterprises that trust each other,
it is possible to have the combined benefits of the
bounce and direct architecture. SB tunnels the pro-
cessed traffic to G2, so CP does not see any headers
at any time. At the same time, this approach does not
suffer from the bounce setup’s latency.
Though not the focus of this work, it is worth men-

tioning that SafeBricks can also be used in a local cloud
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Figure 2: End-to-end system architecture

deployment in which the NFs run within the client enter-
prise. This benefits the client by providing SafeBricks’s
isolation and least privilege for NFs, as well as protec-
tion against administrators of the local cloud (although
the gateway administrators need to remain trusted).

3.1 Overview of the communication protocol

Our protocol for handling connections is the same for all
architectures, as we now explain in terms of G1 and G2.

System bootstrap. The client enterprise first sets up and
verifies the enclaves in the cloud as explained in §7. As
part of this process, the gateways are able to set up a set
of IPSec tunnels with the cloud in a secure way (such as
installing certificates to avoid the risk of a man-in-the-
middle attack). To load-balance flows at the cloud server
via receive-side scaling (RSS), the number of IPSec tun-
nels depends on the number of ports at the server.

As with all such interception systems, the source
endpoints need to be configured to allow interception.
The most common approach is to use an interception
proxy [34], in which the sources’ browsers accept certifi-
cates from the proxy which can now terminate the TLS
connection. Another approach is to install a browser plu-
gin at the client endpoints, which sends the TLS ses-
sion keys to the gateway [29] over a secure channel.
SafeBricks supports both these approaches.

Upon a new TLS connection from a source. G1 termi-
nates the connection as described above and informs G2,
which starts the TLS connection to the destination.

Packet processing. G1 intercepts the TLS traffic from
S, decrypts it, and tunnels it over an IPSec connection.
Packets from the same flow are sent on the same IPSec
connection. Note that as part of this process, the entire
packet (including the header) is encrypted and encapsu-
lated in a new header. We use AES in GCM mode as
the IPSec encryption algorithm, which includes packet
authentication. SB receives the packets, decrypts, and
processes them. It then tunnels the packets over IPSec
to G2. G2 terminates the IPSec tunnel and forwards the
traffic over TLS to the destination server.

4 Background
Before delving into the design of SafeBricks, we provide
a brief overview of NetBricks and some additional details
on Intel SGX relevant to our system.

4.1 Intel SGX
Illegal enclave instructions. SGX does not allow in-
structions within an enclave that result in a change of
privilege levels (e.g., system calls) or cause a VMEXIT.
Applications that need to perform such instructions must
exit the enclave and transfer control to host software.
Memory architecture. Enclave pages reside in a pro-
tected memory region called the enclave page cache
(EPC), whose size is limited to ∼94MB in current hard-
ware. EPC pages are decrypted when loaded into cache
lines, and integrity-protected when swapped to DRAM.

4.2 NetBricks
The NetBricks framework [53] enables the development
of arbitrary NFs by exposing a small set of customizable
programming abstractions (or operators) to developers.
In this respect, NetBricks is similar to Click [37], which
also enables developers to write NFs by composing vari-
ous packet processing elements. However, we choose to
build our system atop NetBricks instead of Click for the
following reasons:
• Unlike Click, the behavior of NetBricks’ operators

can be heavily customized via user-defined functions
(UDFs). This allows us to protect a small number of
operators within the enclave (with NetBricks), which
are then composed into NFs, as opposed to routinely
adding new Click modules.

• More importantly, NetBricks builds upon a safe lan-
guage and runtime, Rust, to provide isolation between
NFs chained together in the same process. In §6, we
describe how SafeBricks extends these guarantees to
provide least privilege across NFs inexpensively.

• NetBricks’ zero-copy semantics also improve perfor-
mance substantially [53].

We now briefly describe some features of NetBricks rel-
evant to the design of our system.
Programming abstractions. To construct an NF, the
developer specifies a directed graph consisting of Net-
Bricks’ operators as nodes. For example, the parse
operator casts packet buffers into protocol structures;
transform modifies packet buffers; and filter drops
packets based on a UDF. All nodes in the NF graph pro-
cess packets in batches.
Execution environment. The NetBricks scheduler im-
plements policies to decide the order in which different
nodes process their packets. Chains of NFs are run in
a single process by composing their directed graphs to-



NICs

DPDK

Poll for I/O

Glue code (untrusted)

Glue code (trusted)

Host I/O interface

SchedulerProgramming 
abstractions

State abstractions SafeBricks 
enclave
(trusted)

SafeBricks 
host 

(untrusted)

Controller

Enclave I/O interface

Logger

Figure 3: SafeBricks framework: White boxes denote exist-
ing NetBricks components, light grey boxes denote modified
components, and dark grey boxes denote new components.

gether as function calls, instead of running each NF sep-
arately in a container or VM. For isolation between NFs,
NetBricks relies on a safe language and runtime, Rust.

Packet I/O. NetBricks builds on top of DPDK [32], a
fast packet I/O library. DPDK polls packets from the
network devices, buffers them in pools of memory, and
maintains a queue of pointers to the packet buffers. NF
instances query DPDK via an I/O interface to retrieve
pointers to the next batch of packet buffers, and process
them in-place without performing any copies.

5 SafeBricks: Framework Design
We now describe how we build our system on top of Net-
Bricks (while redesigning some parts of it). Figure 3
shows the overall design of the framework, highlighting
the components modified or introduced by SafeBricks.
Our goal in this section is to reduce the size of the TCB
while minimizing the overhead of transitions between the
enclave and the host. However, these two goals are often
at odds with each other—the lesser code the enclave con-
tains, the more transitions it makes to outside code. We
now describe how our design balances both these aims.

5.1 Partitioning NetBricks
We carefully split NetBricks into two components—
enclave code and host code.
SafeBricks enclave. At a bare minimum, the enclave
should include the programming and state abstractions
of NetBricks. However, during execution, the NetBricks
scheduler takes decisions regarding which node to pro-
cess next in the directed graph representing the NF (as
described in §4.2). These decisions are frequent—every
time a node is done processing a batch of packets, it sur-
renders control to the scheduler. As a result, excluding
the scheduler from the TCB would result in a large num-

ber of enclave transitions per packet batch. Hence, we
include the scheduler in our TCB as well.
SafeBricks host. The remaining components of Net-
Bricks (mostly pertaining to packet I/O) together form
the SafeBricks host. As described in §4.2, NFs in Net-
Bricks directly access the packet buffers allocated by the
packet capture library (DPDK) without copying them.
Simply excluding DPDK from the enclave without other
modifications is not a viable option because it would gain
access to the packets once they are decrypted. On the
other hand, including DPDK within the enclave would
drastically inflate the size of the TCB by ∼516K LoC.

We circumvent this issue by introducing two new op-
erators in NetBricks: toEnclave and toHost. The
toEnclave operator polls the I/O interface for point-
ers to packet buffers, reads the encrypted buffers from
DPDK-allocated memory and decrypts them inside the
enclave. Once the processing is complete, the toHost
operator re-encrypts the packet buffers and returns them
outside the enclave into DPDK’s memory pool.

More concretely, toEnclave and toHost implement
endpoints of the IPSec tunnel. As a result, even if the
host attacker attempts Iago attacks [15] such as modify-
ing packet buffers or queues outside the enclave, these
will be detected by the authenticity provided by IPSec.

Excluding DPDK from the TCB enables us to remove
NetBricks’ I/O module from the TCB as well. The mod-
ule interfaces with the packet capture library and is used
by the NFs to poll DPDK for packets (Figure 3).

5.2 Packet I/O avoiding enclave transitions
Every receive or send operation for a batch of packets
results in an invocation of the I/O interface. Since we
exclude the packet capture library from the TCB, every
such invocation necessarily results in an enclave transi-
tion. Batch processing of packets alleviates the overhead
of these transitions to some extent, but as we show in
§9.2.1, it is far from being a perfect solution.

Prior works [3,50] have also explored the reduction of
enclave transitions, albeit in a different context—they al-
low enclave threads to delegate system calls to the host
with the help of shared queues. In a similar spirit, we
propose an alternative design point that allows enclave
code to receive and send packet batches from the host
via shared memory, without the need for enclave transi-
tions. To do so, we (i) introduce an additional trusted
I/O module within the enclave (called EnclaveIO) that
exposes the I/O APIs transparently to the rest of enclave
code, and (ii) modify the NetBricks I/O interface outside
the enclave (HostIO) to appropriately interface with the
EnclaveIO module.

SafeBricks allocates two lockless circular queues
(recvq and sendq) on heap memory outside the en-
clave during the application’s initialization, one for re-
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ceiving pointers to packet buffers and the other for send-
ing. HostIO busy polls DPDK for incoming packets
and populates recvq with the buffer addresses. Enclave
code queries the EnclaveIO module which in turn reads
the packet buffer addresses directly from recvq without
having to exit the enclave. To send packets, EnclaveIO
pushes the packet buffer addresses into sendq. HostIO
consumes the buffers asynchronously from this queue,
and finally invokes the I/O interface to emit the packets
to the network. Figure 4 illustrates the approach.

This mechanism doesn’t result in any enclave transi-
tions because (i) enclave code can readily access mem-
ory outside the enclave, and (ii) the queue management is
asynchronous—the HostIO module and the SafeBricks
enclave (containing EnclaveIO) run in separate threads.

5.3 System calls and other illegal instructions
As described in §4.1, SGX allows neither system calls
within enclaves nor instructions that could lead to a
VMEXIT (such as rdtsc, used for reading the times-
tamp counter). There exist a set of general-purpose sys-
tems [3, 9, 30, 50, 67, 72] that add support for such sys-
tem calls to enclave applications, at the expense of added
complexity and/or a significant increase in TCB.

We note that many NFs simply do not make system
calls or execute instructions that require VM exits, and
those made are typically only of a few types: such as
I/O for maintaining logs, or timestamp measurements us-
ing rdtsc. For example, no application in the NetBricks
or Bess source trees [11, 49] implements system calls.
This is due to the high-performance goal of NFs, aim-
ing to run exclusively in user-space [32, 33, 52, 57, 70].
The same extends to user-space implementations of net-
working stacks as well, which are gaining in popular-
ity [20, 35, 40, 41, 46]. Therefore, instead of exposing
an exhaustive API within the enclave for these instruc-
tions, SafeBricks focuses only on the operations essential
for NFs and executes them without the need for enclave
transitions. SafeBricks does not expose any other system
calls or illegal instructions that would require enclave ex-
its to NFs within the enclave.
Logging. Instead of allowing NFs to write to files, we
expose a new state abstraction in SafeBricks that en-
ables them to directly push logs to queues allocated in
heap memory outside the enclave (similar to how we per-
form packet I/O). During system initialization, the Log-
ger module allocates a queue in non-enclave heap per
NF that logs information. NFs can push log entries to the

respective queue by invoking the Logger module. Host
code asynchronously reads the logs off these queues and
writes them to files.

However, since this heap memory is untrusted and vis-
ible outside the enclave, we need to take additional steps
to ensure the security of the logs (as they contain sensi-
tive packet information). We encrypt and chain together
log entries via authentication tags, a fairly standard tech-
nique. The Logger module encrypts each log item Li
as Ci = Enc(id||Li), where id identifies the NF. It then
computes the authentication tag Ti =Auth(Ci||Ti−1), and
pushes (Ci,Ti) to the log queue. Including the previous
tag in the computation ensures that host code cannot ar-
bitrarily drop or reorder log items. The Logger module
maintains the root authentication tag within the enclave.
Verifiers can later validate the log by obtaining the latest
tag from the enclave over a secure channel and replay-
ing the log. We note that by itself, the approach doesn’t
prevent rollback attacks on the logs; however, techniques
for avoiding such attacks exist and can be deployed in a
complementary fashion [69].
Timestamps. SafeBricks relies on the HostIO module
to capture the timestamp per incoming packet batch and
write it to a slot in the packet buffer reserved for exter-
nal metadata. NFs that need timestamps for their func-
tionality simply read it off the packets. This approach
also reduces latency when chains of NFs are deployed
together, as the cost of measuring the timestamp is borne
only once. Though it is possible to ensure the monotonic-
ity of timestamps, SafeBricks does not guarantee that the
timestamps are correct—this is unavoidable in the cur-
rent SGX implementation as the reporting module is not
trusted hardware.

5.4 Execution model
SafeBricks runs the NFs in a multi-threaded enclave,
each enclave thread affinitized to a core. We note that our
shared memory mechanism for packet I/O adds extra bur-
den on system resources compared to vanilla NetBricks,
as it requires an extra thread for running the HostIO
module. This cost, however, gets amortized by mapping
a single HostIO instance to multiple enclave threads.

6 SafeBricks: NF Isolation, Least Privilege
SafeBricks gives enterprises the flexibility to source NFs
from different vendors and deploy them together on the
same platform, while isolating them from each other and
controlling which parts of a packet each NF is able to
read or write. For example, consider a chained NF con-
figuration wherein traffic is first passed through a fire-
wall, then a DPI, and finally a NAT. The firewall ap-
plication only needs read access to packet headers; the
DPI needs read access to headers and payload; while
the NAT needs read and write access to packet headers.



SafeBricks ensures that each NF is given only the mini-
mum level of access to each packet as required for their
functions, e.g., the firewall is unable to write to packet
headers, or read/write to the payload. In other words,
SafeBricks isolates NFs from one another while enforc-
ing the principle of least privilege amongst them.

6.1 Strawman scheme
The importance of least privilege access to traffic has
been recognized before in mcTLS [48], which relies on
physical isolation of NFs and enforces least privilege by
encrypting and authenticating each field of the packet
separately using different keys. Each NF is given the
keys only for fields that it needs access to. To allow read
access, the NF is given the encryption keys; for writes,
the NF is given the authentication keys as well. Packets
are re-encrypted before being transferred from one NF
to the other. In the mcTLS model, NFs are isolated by
virtue of being deployed on separate systems (hardware
or VMs). Correspondingly in our setting, it suffices to
run each NF concurrently in a separate enclave isolating
their address spaces, as shown on the left of Figure 5.

Such an approach, however, eliminates much of the
performance benefits of the underlying NetBricks frame-
work. In addition to adding significant overheads due to
repeated re-encryption of packets, it requires packets to
cross core boundaries between NF enclaves (for enclaves
affinitized to separate cores). Together, this can result in
a system that is up to ∼2–16× slower (as we show in
§9.2.3). Instead, it would be ideal to keep all NFs in the
same enclave and isolate them efficiently within.

6.2 NF isolation in NetBricks
Before describing how SafeBricks enforces least privi-
lege across NFs, we revisit crucial properties of the Rust
language that form the basis of our design.

The NetBricks framework provides isolation between
NFs running in the same address space by building on
a safe language, Rust [7, 53]. Rust’s type system and
runtime provide four properties crucial for memory iso-
lation: (i) they check bounds on array accesses, (ii) pro-
hibit pointer arithmetic, (iii) prohibit accesses to null ob-
jects, and (iv) disallow unsafe type casts.

In addition to memory isolation, NFs also require
packet isolation; i.e., NFs should not be able to access
packets once they’ve been forwarded. NetBricks relies
on Rust’s unique types [7,25] to isolate packets. Rust en-
forces an ownership model in which only a unique refer-
ence exists for each object in memory. Variables acquire
sole ownership of the objects they are bound to. When an
object is transferred to a new variable, the original bind-
ing is destroyed. Rust also allows variables to temporar-
ily borrow objects without destroying the original bind-
ing. By harnessing Rust’s ownership model, NetBricks
ensures that once an NF is done processing a packet, its
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Figure 5: Strawman approach for enforcing least privilege ver-
sus SafeBricks. Solid arrows indicates packet transfers. Dotted
arrows indicate interaction between NFs and the Controller.

pub fn chain<T:'static + Node>(input:T, pmap:HashMap) -> Node {
let input = input.toEnclave()

.wList(pmap.get(’firewall’));
let mut chain = firewall(input)

.wList(pmap.get(’dpi’));
chain = dpi(chain)

.wList(pmap.get(’nat’));
return nat(chain)

.toHost(); }

Figure 6: Code for chaining NFs together (firewall, DPI, and
NAT), generated automatically by SafeBricks from a configura-
tion file. Lines in magenta represent code added by SafeBricks
over and above NetBricks to enforce least privilege across NFs.

ownership is transferred to the next NF and the previous
NF can no longer access the packet.

Taken together, the properties of NetBricks suffice for
the purpose of running NFs safely within the same ad-
dress space. However, they do not provide the desired
security, as we explain next.

6.3 Isolating NFs within the same enclave
The properties of NetBricks do not satisfy the require-
ments of our threat model for the following reasons:
• The isolation guarantees only hold if NFs are built

using a compiler that enforces the safety properties
above. In our model, however, enterprises may source
NFs from various vendors that compiled them in their
own way and lack incentive to enforce these properties.

• Each NF still receives ownership of entire packets, in-
stead of limited read / write access to specific fields.

We now describe how SafeBricks addresses both issues.
6.3.1 Ensuring memory safety
SafeBricks needs to ensure that NFs are built using a
compiler that prohibits unsafe operations inside NFs. In-
stead of trusting NF providers, SafeBricks ensures that a
trusted compiler gets access to the raw source code of all
the NFs which it can then build in a trusted environment.

This strategy is seemingly in conflict with the confi-
dentiality of NF rules. In §7 we show how SafeBricks
performs this compilation such that neither the enterprise
nor the cloud learns the source code of the NFs.
6.3.2 Enforcing least privilege
SafeBricks extends NetBricks’ memory safety guaran-
tees by interposing on its packet ownership model. In-
stead of transferring packets across NFs, SafeBricks in-



troduces a Controller module that mediates NF access to
packets as depicted in Figure 5 (right).
Controlling access to packets. The Controller holds
ownership of packet buffers, and NFs can only borrow
packet fields (or different fragments of the data buffers)
by submitting requests to the Controller. To provide least
privilege, each packet in SafeBricks encapsulates a bit
vector of permissions. Each function in the packet API
exposed by the Controller is associated with a bit in the
permissions vector. Before lending the NF a reference
to the requested field, the Controller checks the corre-
sponding bit in the vector and answers the request only
if the bit is set. Otherwise, the call returns an error. Fur-
thermore, by controlling whether an API call returns a
mutable or an immutable reference, the framework also
disambiguates read access from writes. Rust’s type sys-
tem ensures that once the NF processing completes, the
binding between the reference and the field is destroyed,
and any later attempt by the NF to access the field will
result in a compilation error.
Setting packet permissions. SafeBricks updates the
permissions vector in packets with the help of a new
packet processing operator: wList (whitelist). Chained
NFs are interleaved with invocations of the wList oper-
ator that applies a given vector of permissions to each
packet batch before it’s processed by the next NF. Fig-
ure 6 illustrates the code for chaining NFs together
while enforcing least privilege. In §7, we describe how
SafeBricks generates this code automatically using a
configuration file supplied by the client enterprise.

We need to fulfill two more requirements for the guar-
antees to hold: (i) NFs should not be able to alter the
permissions vector during execution, and (ii) NFs should
not be able to parse packet buffers arbitrarily—for ex-
ample, an NF that has permissions only for IP head-
ers should not be able to incorrectly parse TCP head-
ers as IP, thereby circumventing the policy. SafeBricks
therefore does not expose these operations to NFs. NFs
in NetBricks invoke the parse operator to cast packet
buffers into protocol structures before processing them.
In contrast, SafeBricks mandates that packets be parsed
as required before being processed by NFs (not shown
in Figure 6 for simplicity). In §7, we describe how the
SafeBricks loader interleaves NFs with parse nodes and
stitches them together into a directed graph based on
enterprise-supplied configuration data.
Runtime overhead. The permissions vector leverages
portions of the packet buffers reserved for metadata, and
hence does not lead to any memory allocation overhead.
Setting and verifying permissions, however, lead to a
small overhead at runtime: setting the permissions vec-
tor before each NF via the wList operator increases the
depth of the NF graph, and verifying the permission adds
an extra check as all requests are mediated by the Con-

troller. As we see in §9.2.3, the impact on performance
is small for real applications.

7 SafeBricks: System Bootstrap Protocol
We now describe the protocol for bootstrapping the over-
all system. Instead of compiled binaries, SafeBricks
needs access to the raw source code of the NFs from
the providers so it can pass them through a trusted com-
piler, which ensures that NFs do not perform unsafe op-
erations and are confined to least privilege access. The
natural strategy is to have the client enterprise compile
these binaries and upload them to the cloud, as in prior
enclave-based systems such as Haven [9]. However, this
approach is problematic in our case because NF code is
proprietary and the client enterprise may not see it.

To address this problem, the idea in SafeBricks is to
run inside the enclave a meta-functionality: the enclave
assembles the NFs and compiles them using a trusted
compiler, and only then starts running the resulting code.
The key to why this works is that both the client enter-
prise and the NF vendors can invoke the remote attes-
tation procedure to check that the enclave is running an
agreed upon SafeBricks loader and compiler (both being
public code). In this way, (i) each NF vendor can ensure
that the enclave does not run some bad code that exfil-
trates the source code to an attacker, and (ii) the client
enterprise makes sure the NF vendor cannot change what
processing happens in the enclave. The bootstrap process
consists of two phases, assembly and deployment.

7.1 Phase 1: NF assembly
For assembly, SafeBricks uses a special enclave pro-
visioned with two trusted modules—a loader and a
compiler—that combine the NFs into a single binary.
Loader. The loader exposes a simple API that allows
the client enterprise to specify (i) encrypted NF source
codes, (ii) optionally, unencrypted NF source codes that
might be interspersed with the proprietary encrypted
NFs, (iii) a configuration file outlining the placement of
each NF in the directed graph (when chained together),
and (iv) a whitelist of permissions per NF indicating the
fields each NF is allowed to access.

For the first two, the loader exposes the following
API to the client: load(name, code, is_encrypted).
For the third, the client specifies the NF graph as a
set of edges: (namei → name j). For the fourth, the
client supplies a configuration file with a list of items of
type: (name, op, proto:field) where op ∈ [read,
write] and proto:field indicates a field within a pro-
tocol that access is given to. For example, for a firewall,
one such entry is (firewall, read, IP:src), in ad-
dition to entries for other fields of the IP header.

The loader decrypts the NFs and stitches them together
based on the specified graph, before invoking the com-
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piler. (In §7.2, we discuss how the enclave obtains the
keys to decrypt this code.) In doing so, it adds the fol-
lowing additional nodes to the composite graph: (i) a
toEnclave node at the root of the graph, (ii) a toHost
node at the end of the graph, and (iii) parse nodes fol-
lowed by a wList node before each NF. The loader infers
the arguments to the parse and wList nodes automati-
cally from the configuration file. Thus, parse is run by
the trusted SafeBricks framework and not by an NF or the
client enterprise, ensuring that the packets are not parsed
in an unintended way.
Compiler. The compiler is a standard Rust compiler that
implements a lint prohibiting unsafe code inside the en-
clave, as discussed in §6.3. Since launching the compiled
binary requires OS support, the binary must be placed
into main memory where the OS can access it post com-
pilation. However, giving the OS access to the binary
unencrypted would violate NF confidentiality.

In order to maintain the privacy of NF code while still
allowing its execution by the OS, we take inspiration
from VC3 [59]. Similarly to VC3, our compiler links
the compiled NF code to a small amount of public code
NFload, and then encrypts the NF code because it will be
placed in main memory for the OS to load in the deploy-
ment enclave. We refer to the encrypted code as NFpriv.
Post compilation, NFload+NFpriv are loaded and run in a
separate deployment enclave by the OS. NFload will be
responsible for decrypting and interfacing with NFpriv
within the deployment enclave once it’s initialized.

The loader and compiler are generic modules indepen-
dent of the NFs. Hence, the NF providers need to audit
them only once, across all customer deployments.
Assembly protocol. Figure 7 illustrates the assembly
and deployment protocol. 1 The cloud provisions an
enclave with the SafeBricks loader and compiler mod-
ules. 2 Next, the client as well as the NF providers
verify that the loader and compiler have been securely
provisioned into the enclave using the remote attestation
feature of SGX, as described in §2.1. During the attesta-
tion, the enclave also returns a securely generated public
key to each NF provider. 3 Each provider then encrypts

the NF source code and rulesets with the received pub-
lic key and submits it to the client enterprise. 4 The
enterprise loads the encrypted source codes and rulesets
along with configuration files into the enclave via APIs
exposed by the loader module. 5 The loader decrypts
the source codes, stitches them together, and builds and
encrypts the assembled code using the compiler, produc-
ing NFload+ NFpriv. It then returns to the client a hash
measurement of the compiled code so that the client can
later verify it once it’s deployed in a separate enclave.

7.2 Phase 2: NF deployment

6 The loader finally requests the OS to deploy NFload+
NFpriv in a separate enclave on the cloud platform. It
attests the deployed enclave, establishes a secure chan-
nel with NFload, and transfers to it the decryption key
for NFpriv. NFload decrypts the private code and starts
execution. Note that since the assembly enclave attests
the deployment enclave and the NF vendors attested the
assembly enclave, the NF vendors are assured that the
deployment enclave will not send the decrypted binary
anywhere but merely run it. 7 The client then attests the
deployed enclave using the measurement it received at
the end of the assembly phase, after which it establishes
a secure channel of communication with the enclave.

8 Security Guarantees
We describe SafeBricks’s guarantees assuming the threat
model in §2, including the enclave assumption.

SafeBricks’s main benefit to confidentiality is that it
exposes only encrypted traffic to a cloud attacker, so the
attacker does not see the contents of the packets and is
limited to observing only packet sizes, timing, and NF
access patterns to packets and data. SafeBricks protects
in this manner the packet payload and, except in the di-
rect architecture, the header as well.

As with any system with complex processing, encryp-
tion does not mean perfect confidentiality because of the
existence of side-channels. In §2.2 we mentioned some
categories of side-channels that SafeBricks, and SGX in
general, does not protect against. In addition, there are
a few other SafeBricks-specific side channels. First, an
attacker in SafeBricks knows which (encrypted) packets
belong to which flow because each flow is affinitized to
an IPSec tunnel for scalability. If this issue is of con-
cern, it can be fixed by using a single tunnel for all flows
at the expense of performance. Second, an attacker can
measure the time taken by NFs to process a batch of
packets. This could leak information in some cases, e.g.,
whether an expensive regular expression was triggered
or not. This is a classical problem, already investigated
by prior work [6, 13, 78] with common solutions involv-
ing padding, i.e., bounding the running time of NFs by
executing dummy cycles. Third, an attacker can learn



the action taken by an NF, e.g., whether a connection
was dropped simply by noticing that fewer packets were
sent out. Like many other side-channels, this leakage can
also be removed via padding—for example, the gateways
could continue sending dummy traffic.

SafeBricks also protects the integrity of the traffic and
of the NF processing. A cloud attacker cannot drop, in-
sert, or modify packets, nor can it tamper with NF exe-
cution. Integrity of the NFs is guaranteed by SGX, while
the integrity of the traffic is guaranteed by the IPSec tun-
nels between the enclave and the client.

Via the isolation and least privilege design, SafeBricks
further ensures that each NF is confined to accessing only
parts of the packet the enterprise desires. For the NF
vendors, SafeBricks guarantees that NF source codes are
hidden from all untrusted parties, including the client en-
terprise, a cloud attacker or other NF vendors.

8.1 Comparison to prior approaches
Prior approaches leak significantly more information
about the traffic to the cloud provider than SafeBricks.
Cryptographic approaches. BlindBox [63] and Em-
bark [38] encrypt the traffic in a special way that allows
the cloud to match encrypted tokens against the traffic
and detect if a match occurs. In these schemes, the cloud
learns the offset at which any string from any rule in an
NF occurs in the packet, regardless of whether or not the
rule as a whole matched (rules often contain several such
strings). If the rule is known (as in public rulesets), the
attacker learns the exact string at that offset in the packet.
Even if the rule string is not known, the attacker learns its
frequency, which could lead to decryption via frequency
analysis. Assuming an enclave employing side-channel
protections as in §2.2, SafeBricks does not reveal this
information. The attacker does not know which rule or
part of a rule triggered on a packet. Moreover, BlindBox
and Embark do not protect against active attackers who
modify the traffic flow and, for example, drop packets.

We remark, however, that these prior approaches rely
on cryptography alone, and not on trusted hardware as
SafeBricks, which makes it much more challenging for
them to achieve the properties SafeBricks achieves.

mcTLS [48] aims to provide least privilege in a setting
where each NF is a separate hardware middlebox and be-
longs to a different trust perimeter. Running mcTLS in
the cloud in software, however, removes essentially all
its security guarantees: the cloud receives the union of
the permissions of all NFs, which often, is everything.

9 Evaluation
We now measure the impact of SafeBricks on NF perfor-
mance versus an insecure baseline. We also measure the
reduction in TCB size as a result of our design. We do
not discuss the performance of SafeBricks’s gateway as

the protocols it implements are well understood.

9.1 Setup
We evaluate the performance of SafeBricks using SGX
hardware on a single-socket server provisioned with an
Intel Xeon E3-1280 v5 CPU with 4 cores running at
3.7GHz. We disable hyperthreading for our experiments.
The server has 64GB of memory, and runs Ubuntu
14.04.1 LTS with Linux kernel version 4.4. The hard-
ware supports the SGX v1 instruction set which does not
allow dynamic page allocation. Further, the total enclave
page cache memory (EPC) available to all enclaves is
limited to∼94MB. For test traffic, we use another server
that runs a DPDK-based traffic generator and is directly
connected to the SGX machine via Intel XL710 40Gb
NICs. The SGX machine acts as the cloud, and the traf-
fic generator is both source and sink for the client traffic.

9.2 Performance
We evaluate the performance of SafeBricks using (i) syn-
thetic traces of different packet sizes, from 64B to 1KB,
and (ii) the ICTF 2010 trace [31], captured during a
wide-area security competition and commonly used in
academic research. We report throughput in millions of
packets per second (Mpps). In all experiments, we ex-
change traffic between the traffic generator and the SGX
machine over an encrypted tunnel (per §3). As a result,
the size of each packet exchanged between the enterprise
and the cloud increases by a fixed amount, equal to the
headers added by the IPSec protocol.

We compare SafeBricks against an insecure baseline
comprising vanilla NetBricks augmented with support
for the encrypted tunnel. The baseline represents a setup
in which traffic is sent to the cloud over an encrypted
channel (hence safe from network attackers), but lacks
the protection of SafeBricks at the cloud. Finally, we re-
port the median of 10 iterations for each experiment.
9.2.1 Framework overheads
We first measure the overhead introduced by SafeBricks
as a result of redesigning the core NetBricks framework.
To illustrate the benefits of our architecture, we also com-
pare the overheads of the strawman approach that per-
forms packet I/O via enclave transitions (per §5).

The net overhead of both approaches varies with the
complexity of NFs and the latency the NF introduces as
a result of packet processing. In this experiment, we use
CPU cycles as a proxy for NF complexity, and evaluate a
simple NF that first modifies each batch of packets by in-
terchanging the source and destination IP addresses, and
then loops for a given number of cycles. We use packet
batches of size 32 for both NetBricks and SafeBricks.

Figure 8 (left) presents the results with varying packet
sizes when the NF is deployed on a single core, and
Figure 8 (right) shows the performance for 64B packets
when the deployment is scaled to two cores. In the worst
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Figure 8: (Left) SafeBricks framework performance on 1 core compared to the baseline across different packet sizes, and with
increasing NF complexity (i.e., processing time in CPU cycles). (Right) Performance with 64B packets and NFs on 2 cores.

case with 64B packets and a delay of 1 cycle, the over-
head introduced by SafeBricks is < 5%. As the process-
ing time begins to dominate (with increasing NF com-
plexity), the overhead of SafeBricks becomes negligible.

The results also confirm that the design of SafeBricks
outperforms the strawman approach, the overhead of
which is∼40% in the worst case. It’s worth noting, how-
ever, that the relative overhead of the strawman approach
decreases with larger packet sizes, as the rate of I/O falls.
9.2.2 Impact on real NFs
Unlike the simple NF in the previous experiment, real
NFs have varying state requirements. Since the sizes
of both the processor caches and enclave memory are
limited, the overheads of SafeBricks are also governed
by the memory access patterns of the NFs in addition
to their complexity. In particular, L3 cache misses are
more expensive for enclave applications because cache
lines need to be encrypted/decrypted before being evict-
ed/loaded. In this experiment, we characterize the effect
of state on the performance of SafeBricks by evaluating
the following sample applications:
• Firewall: We use a stateful firewall application that

linearly scans a list of access control rules and drops
connections if it finds a match. We evaluate it using a
ruleset we obtained from our department (643 rules).

• DPI: We use a simple deep packet inspection (DPI)
application that implements the Aho-Corasick pattern
matching algorithm [1] on incoming packets, similar
to the core signature matching component of the Snort
IDS [58]. We evaluate the DPI using patterns extracted
from the Snort Community ruleset [68].

• NAT: Our implementation is based on MazuNAT [42].
• Load balancer: We use a partial implementation of

Google’s Maglev [20], that spreads traffic between
backends using a consistent hashing lookup table.

Figure 9 shows the normalized overhead of SafeBricks
on application performance across different packet sizes
with synthetic traffic. Figure 12 summarizes the worst-
case results corresponding to 64B packets. Figure 12 also
presents the performance results with the ICTF trace.
Across applications, the overhead ranges between an ac-
ceptable ∼0–15% for both synthetic and real traffic, and

is a result of page faults triggered by L3 cache misses.
Impact of larger memory footprint. In the previous ex-
periment, the working sets of the applications exceeded
the L3 cache but remained less than the size of the EPC
(∼94MB). However, accessing memory beyond the EPC
is doubly expensive because evicted EPC pages need to
be encrypted and integrity-protected. We now assess the
impact of a large memory footprint using the DPI appli-
cation. The application builds a finite state machine over
all the patterns in the ruleset, and as such has a signifi-
cantly larger memory footprint than other NFs.

Figure 10 shows the results of our experiment using an
increasing number of rules from the Emerging Threats
ruleset [21] and the ICTF trace. At 18K rules, the work-
ing set of the DPI breached the ∼94MB EPC boundary
causing its performance to sharply deteriorate thereafter.

This experiment indicates the limits of SafeBricks
with regard to the nature of applications it can efficiently
support. However, we note that the ∼94MB limit is only
an artifact of existing hardware and isn’t fundamental to
SGX enclaves. The next generation of SGX machines is
likely to support larger EPC sizes.
9.2.3 Cost of NF isolation
We now evaluate the overhead as a result of our mech-
anisms for enforcing least privilege. Given a chain of
NFs, SafeBricks increases the overall depth of the NF
graph by one node per NF (§6.3). In this experiment, we
first measure this extra cost as a function of the length of
the NF chain. We then compare our approach against an
mcTLS-like strawman that relies on encryption for selec-
tively exposing packet fields to NFs (§6.1).
Effect of chain length. For this part of the experiment,
we use a simple NF that decrements the time-to-live
(TTL) field in the IP header of each packet, composed
together into chains of varying length. Before executing
subsequent NFs in the chain, SafeBricks whitelists ac-
cess to the TTL field in the permissions vector per packet.

Figure 11 compares the performance of SafeBricks
with and without least privilege. Since the NF is state-
less, in the absence of isolation SafeBricks does not
introduce any discernible overhead against the base-
line. With least privilege enforcement, the latency added
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Synthetic (64B packets) ICTF trace
NF Baseline SB Baseline SB
Firewall 3.86 3.58 1.96 1.93
DPI 1.10 0.96 0.29 0.25
NAT 3.80 3.21 1.97 1.80
Maglev 3.59 3.04 1.92 1.73

Figure 12: Performance of sample NFs (Mpps)
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Figure 13: Cost of least privilege across NF chains (2 cores)

by the additional nodes increases as the length of the
chain increases. Consequently, the overhead climbs from
∼14–40% as the chain grows to a size of seven NFs. We
note that these numbers represent an upper bound on the
overhead of SafeBricks. As we show in the next part of
this experiment, the percentage overhead is much smaller
for real, more complex NFs.
Comparison with encryption-based strawman. We
now measure the performance of SafeBricks using a
chain of real NFs each of which accesses different parts
of packets—a firewall (given read permissions on packet
headers), a DPI (with read permissions on both headers
and payload), and a NAT (with read and write permis-
sions on packet headers). The NF implementations are
identical to the ones described in §9.2.2.

To quantify the benefit of our approach for enforc-
ing least privilege, we also compare SafeBricks to an
mcTLS-like strawman in which each NF in the chain is
run in a separate enclave (as described in §6.1). In all
setups (including the baseline), we allocate two cores for
running the NFs, and reserve one core for I/O.

Figure 13 shows the results with two different chains:
(i) a DPI followed by a NAT, and (ii) a firewall chained to
a DPI and then a NAT. In the former scenario, SafeBricks
results in an overhead of 15% in the absence of least priv-

ilege enforcement. With least privilege, the throughput
declines by a further 3%, confirming that the cost of en-
forcing least privilege across real NFs is minimal. In con-
trast, an mcTLS-like approach (with each NF running in
a separate enclave, affinitized to distinct cores) results in
a sharper decline of 2.2× the performance being bottle-
necked at the DPI along with the added encryption and
copying of packets as they move across NFs in different
enclaves. In the latter scenario with three NFs in a chain,
the performance of the strawman approach falls further,
by 16×. In this scenario, however, the NFs (and hence
enclaves) outnumbered the available cores in our setup,
leading to resource contention.

9.3 Comparison with BlindBox and Embark
Both SafeBricks and Embark tunnel packets to a third-
party service in the cloud. For the ICTF trace, IPSec tun-
neling inflates the bandwidth by 16% due to both encryp-
tion and encapsulation. Embark introduces a further 20-
byte overhead per IPv4 packet because it converts them
to IPv6, resulting in a net overhead of 21%. BlindBox,
in contrast, does not pay the cost of tunneling as it is
targeted at in-network DPI applications. However, the
BlindBox encryption protocol (also used by Embark for
DPI processing) inflates bandwidth consumption by up
to 5× in the worst case, unlike SafeBricks which only
uses standard encryption schemes.

As regards throughput, both Embark and BlindBox
are competitive with unencrypted baseline NFs and incur
negligible overhead, whereas SafeBricks impacts perfor-
mance by ∼0–15% across NFs due to its use of SGX
enclaves (§9.2.2). At the same time, both BlindBox and
Embark impact performance at the client considerably—
with BlindBox, client endpoints need to implement its
special encryption protocols over and above TLS and
take 30× longer to encrypt a packet; Embark centralizes
this overhead at the enterprise’s gateway instead. Clients
do not need to pay these costs with SafeBricks.

9.4 TCB size
SafeBricks involves the use of two types of enclaves: one
for assembling the NFs during system bootstrap (per §7),
and another for deploying the NFs. The assembly en-
clave primarily contains the Rust compiler, which is nec-



essarily part of the TCB of applications with or without
SafeBricks. The deployment enclave, on the other hand,
represents the TCB which we aim to reduce in redesign-
ing the NetBricks framework.

To evaluate the reduction in TCB, we thus com-
pare the size of the deployment enclave components in
SafeBricks with that of NetBricks. The size of the en-
clave binary in SafeBricks is ∼1MB. In comparison, the
aggregate size of NetBricks components is 21.3MB, rep-
resenting a TCB reduction of over 20×. The reduction
can largely be attributed to the exclusion of DPDK from
the TCB as a result of partitioning NetBricks, which it-
self comprises ∼516K LoC. Furthermore, by designing
for our specific use case, we avoid including a library OS
within our trust perimeter, the size of which can be as
large as 209MB (as in Haven [9]).

10 Limitations and Future Work
SafeBricks inherits three primary limitations owing to its
use of Intel SGX.

First, enclave memory is limited to ∼94MB in exist-
ing hardware, making SafeBricks impractical for appli-
cations with larger working sets. Exploring alternate ar-
chitectures that combine cryptographic approaches and
SGX, thereby reducing the memory burden on the en-
claves, is an interesting open problem in this context.

Second, SafeBricks is unsuitable for NFs relying on
operations that are illegal within SGX enclaves, such as
system calls and timestamps. Though SafeBricks sup-
ports timestamps, it can only ensure their monotonicity
and not correctness.

Third, SGX enclaves, and consequently SafeBricks,
are vulnerable to side-channel attacks (per §2.1). Though
a number of potential solutions have been proposed in re-
cent work [16,18,27,65,66], their impact on application
performance is often non-trivial. Investigating the viabil-
ity of these proposals in the NFV context, or developing
targeted solutions for NFs is potential future work.

11 Related Work
We divide related work largely into two categories:
(i) cryptographic approaches for securing NFs, and
(ii) proposals based on trusted hardware. We do not dis-
cuss the mcTLS protocol [48] further as we have already
compared SafeBricks with mcTLS in §6 and §8.
Cryptographic approaches. Recent systems propose
the use of cryptographic schemes that enable NFs to op-
erate directly over encrypted traffic [5, 38, 44, 63, 76].
When compared to SafeBricks, these approaches have
the advantage that they do not rely on trusted hardware.
However, this comes with two significant limitations.
(1) Their functionality is severely constrained, as dis-
cussed in §1, and hence are not applicable to a wide range
of NFs. To provide full functionality with cryptography,

one needs schemes such as fully-homomorphic encryp-
tion [23], which is orders of magnitude too slow. (2) Re-
garding security, we explained in §8 how these systems
leak more information to the cloud than SafeBricks.
Trusted hardware proposals for legacy applications.
Other work has shown how to use hardware enclaves to
run applications in the cloud without having to trust the
cloud provider [3,9,30,50,67,72]. The mandate of these
systems is to support arbitrary, legacy applications in-
stead of optimizing for any in particular. As a result,
some of these systems inflate the size of the TCB by in-
troducing a library OS within the enclave (to support ille-
gal enclave instructions), or impact performance because
of enclave transitions.
Trusted hardware proposals for network applica-
tions. Recent work has proposed the use of hardware
enclaves for securing network applications. Kim et al.
use SGX to enhance the security of Tor [61], and also
identify NFs as a potential use case [36]. Other propos-
als develop prototypes for specific functions: Coughlin
et al. [19] present a proof-of-concept Click element for
pattern matching within enclaves; and Shih et al. [64]
propose SGX for isolating the state of NFs, applying it
to a subset of the Snort IDS. In contrast, SafeBricks is
a general-purpose framework that additionally enforces
least privilege across NFs. At the same time, SafeBricks
balances the interests of NF vendors by maintaining the
confidentiality of NF code and rulesets.

Concurrent to our work, SGX-Box [29] and Shield-
Box [71] also propose frameworks for executing NFs
within enclaves. SGX-Box [29] does not explicitly han-
dle NF isolation or chaining; ShieldBox integrates SGX
with Click and isolates each NF in a separate enclave.
In such cases, ShieldBox reports a throughput decline
of up to 3×. SafeBricks, in contrast, avoids this over-
head by isolating NFs within the same enclave with the
help of language-based enforcement. However, unlike
SafeBricks, ShieldBox also supports NFs with system
calls by leveraging the Scone framework [3]. Both SGX-
Box and ShieldBox also allow NFs to access entire pack-
ets, while SafeBricks enforces least privilege.
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