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Abstract. Reported results on cache trace attacks on CLEFIA do not
work with increased cache line size. In this paper we present an en-
hanced cache trace attack on CLEFIA using the differential property
of the s-boxes of the cipher and the diffusion properties of the linear
transformations of the underlying Feistel structures. The attack requires
3 round keys, which are obtained by monitoring cache access patterns
of 4 rounds of the cipher. A theoretical analysis is made on the com-
plexity of the attack, while experimental results are presented to show
the effectiveness of power and timing side-channels in deducing cache
access patterns. The efficacy of the attack is theoretically justified by
showing the effect of cache line size on the time and space complexity
of the attack. Finally countermeasures that guarantee security against
cache-attacks are compared for their efficiency on large cache lines.

1 Introduction

In 2000, John Kelsey, Bruce Schneier, David Wagner, and Chris Hall prophe-
sied that cryptographic ciphers implemented on systems with cache memory are
vulnerable to side-channel attacks [9]. These attacks, which came to be known
as cache attacks, exploited the non-uniform behavior between a cache hit and
a cache miss. The differential behavior between a cache hit and a miss is man-
ifested through side-channels such as timing, power, and electro-magnetic ra-
diation. Over the decade, several forms of cache attacks have been discovered
[1,4,5,7,10,11,12,18,17], which provides different strategies to extract information
from the side-channels. Cache attacks have been found to be a serious threat to
the security of modern crypto-systems due to the small number of encryptions
that need to be monitored and the possibility of remote attacks [2,8].

Most of the cache attacks developed target AES and all of them follow a divide-
and-conquer approach. Some of these attacks are [1,4,5,7,10]. The attacks on AES
split the 128 bit key into 16 bytes and then recovers each byte independently.
Obtaining all 16 bytes can easily be done by targeting just the first round of
the cipher. In Feistel ciphers such as CAMELLIA [3] and CLEFIA [14] however,
the first round provides only 64 bits of the key. Obtaining the remaining 64 bits
requires more rounds to be attacked. This is difficult due to two reasons. First,
for inner rounds it becomes more difficult to have control of the inputs to that
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round; an essential requirement in cache-attacks (except for a variant in [16],
which requires knowledge of neither the plaintext nor ciphertext and depends
on a spy process to reveal the cache access patterns). Second, the correctness of
the round key recovered depends on the correctness of the previous round keys
obtained, this adds to the unpredictability.

In [12] and [19], a cache attack on CLEFIA was described, which required
attacking 3 rounds of the cipher to completely recover the 128 bit secret key.
However, the attack in [19] by Zhao and Wang used a strong assumption of
misaligned tables. Misalignment of tables does not happen unless forced by the
programmer; for example to optimize for space. The attack in [12] used a combi-
nation of differential techniques with cache access patterns to attack CLEFIA in
214 encryptions. The attack however is restricted to cache memories with a cache
line size of 32 bytes. This is not the conventional cache line size on modern day
microprocessors. In this paper we present and critically analyze a new attack on
CLEFIA that can be mounted on standard microprocessors. The contributions
of this paper are as follows:

– We enhance the attack on CLEFIA in [12] to eliminate the constraint of the
cache line size. On a microprocessor with a 64-byte cache line, the attack
has a complexity of 211 encryptions, while on a system with a 32-byte cache
line, the attack has an estimated complexity of 212 encryptions. This is lesser
than the 214 encryptions reported in [12].

– We critically analyze the difficulty in attacking more than one round of a
Feistel cipher using the proposed attack on CLEFIA.

– A study is made on the effect of cache-line size on the complexity of the
attack. Based on this analysis we show a peculiar property that the attack is
better suited for microprocessors with large cache lines, provided the entire
table does not completely fit into a single line in the cache.

– A discussion on countermeasures is done and their overhead on the perfor-
mance compared.

The outline of the paper is as follows: Section 2 provides a brief introduction
to CLEFIA and the differential cache attack proposed in [12]. The drawbacks
of the existing attack and the new attack’s principle are presented in Section 3.
This section also presents a theoretical analysis on the complexity of attacking
different rounds of a cipher. Section 4 presents the complete attack on CLEFIA.
Section 5 compares the capabilities of a power adversary and a timing adversary
with respect to the number of measurements required to distinguish between a
cache hit and a miss. The effect of the cache line size and number of encryp-
tions required is analyzed in Section 6, while countermeasures for the attack are
discussed in Section 7. The final section has the conclusion of the paper.

2 Preliminaries

In this section we first give a brief description of the CLEFIA structure, then
present the attack in [12].
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Fig. 1. CLEFIA Block Diagram

2.1 The CLEFIA Structure

The 128-bit block cipher CLEFIA [15] has a type-2 generalized Feistel structure
[20] as shown in Figure 1. The 16 bytes plaintext input P0 to P15 is grouped in 4
byte words. There are 18 rounds and in each round, the key addition, substitution
and diffusion is provided by the application of two F functions, F0 and F1. The
substitution in the F functions are done by two 256 element s-boxes S0 and S1,
while the diffusion is done by the self-inverting matrices M0 and M1, which are
defined as follows.

M0 =

⎛
⎜⎜⎝

1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

⎞
⎟⎟⎠ M1 =

⎛
⎜⎜⎝

1 8 2 A
8 1 A 2
2 A 1 8
A 2 8 1

⎞
⎟⎟⎠ (1)

Each round has an addition of round keys. The ith round uses the round keys
RKi and RKi+1. Each of these round keys are of 32 bits. Additionally, whitening
keys WK0 to WK3 are applied at the start and end of encryption as seen in
Figure 1.

2.2 Cache Attacks on CLEFIA

All cache attacks target structures in the block cipher such as in Figure 2. The
figure shows two accesses to table S with indices (x ⊕ k1) and (y ⊕ k2). When
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a cache hit occurs the following relation holds leading to leakage of information
about the ex-or of the keys; assuming that the inputs x and y are known.

〈k1⊕ k2〉 = 〈x⊕ y〉 (2)

We note that due to the effects of the cache line, only the most significant bits
can be equated, therefore 〈·〉 refers to only these most significant bits. If the size
of k1 and k2 is l bits, and there are 2δ elements that share a cache line, then
only the most significant b = l − δ bits satisfy the above equation. Similarly,
when a cache miss occurs, the following inequality holds.

〈k1⊕ k2〉 �= 〈x⊕ y〉 (3)

Given any set of 4 round keys (RK4i, RK4i+1, RK4i+2, RK4i+3), where
i mod 2 = 0, CLEFIA’s key expansion algorithm can be reversed to obtain 121
out of the 128 bit secret key. For cache-attacks, determining the first set of round
keys RK0, RK1, RK2, and RK3 is most suited. However, the presence of the
whitening keysWK0 andWK1 makes the determination of these round keys not
straight forward. In [12] this difficulty is circumvented by having 3 stages in the
attack. First RK0 and RK1 are discovered, thenWK0⊕RK2 and WK1⊕RK3,
and finally RK4 and RK5. Determining each of these keys requires knowing the
inputs to the respective F functions. For example, determining WK0 ⊕ RK2
requires knowledge of X0-2 (see Figure 1), which in turn can be only computed
if RK0 is known. Thus, an error in determining RK0 would also cause an error
in WK0⊕RK2.

3 Enhancing the Differential Cache Attack

In the first part of this section, we discuss the reason why the attack proposed in
[12] fails on systems with large cache lines. We then present a general technique
to enhance the attack that would work with larger cache lines.

3.1 Why the Attack in [12] Fails for Large Cache Lines?

Figure 3 shows the application of three rounds of an F function (either F0 or
F1). The differential attack in [12], used the fact that if at-least 3 bits of the
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difference of each output byte of F is known, then properties of the matrix (M0
for F0 and M1 for F1) can be used to obtain few output bits of the s-boxes.
The difference distribution tables of the s-boxes can then be used to obtain a set
of candidate keys. The crucial part of obtaining 3 bits of the F function output
is done by forcing cache hits in the s-box tables of the second round. Since the
CLEFIA implementation1 attacked used 256 byte tables, and elements within a
cache line cannot be distinguished, the table should occupy at-least 8 cache lines
in order to obtain the required 3 bits of information. This means that each cache
line can be of at-most 256

8 = 32 bytes. If the cache has the more conventional
64 byte cache lines, then only 2 bits of information can be obtained. This is
insufficient to apply the properties of the matrices in order to derive the output
difference of the s-boxes.

3.2 The Proposed Differential Cache Attack

CLEFIA is based on the generalized Feistel structure therefore we use Figure 3
to explain the principle of the new attack. The input x consists of 4 concatenated
bytes (x0|x1|x2|x3) and is known as the differential introducing input, while y
comprising of the bytes (y0|y1|y2|y3) is the restoring input. The F in the figure
is either CLEFIA’s F0 or F1 function (see Figure 1). For any fixed value of x,
each byte of y is varied until cache hits are obtained in all s-box tables in the
second round F function. This is called the collision setup phase. In this state,
the following equation holds for 0 ≤ i ≤ 3 if a cache hit is obtained.

〈xi ⊕ k1i〉 = 〈yi ⊕ k2i ⊕ F (x, k1)i〉 (4)

1 http://www.sony.net/Products/cryptography/clefia/download/data/clefia ref.c
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Similarly, the following inequality holds if a cache miss is obtained.

〈xi ⊕ k1i〉 �= 〈yi ⊕ k2i ⊕ F (x, k1)i〉 (5)

Now the input byte x0 is displaced by dx0 �= 0, while all other bytes of x are
unchanged. After the s-box operation, the displacement is diffused to all output
bytes of the F function (since the branch number for the F functions in CLEFIA
are 5 [14]), due to which, some of the cache hits in the second round are lost. The
cache hits that remain are due to the tables in the second round being accessed
in the same cache lines as before. The collision state is restored by reinforcing
cache hits in the second round by modifying y. This is called the restoring phase.
Let y′ = (y′0|y′1|y′2|y′3) be the new value of y. The differences at the output of the
F function is dyi = yi ⊕ y′i.

From the difference distribution table for the s-box, one can derive the
set of possible output differentials corresponding to the input differential dx0 .
Let this set be called D. For every differential do ∈ D, the matrix product
M · (do , 0 , 0 , 0)T is computed to obtain the differentials (dz0 , dz1 , dz2 , dz3)

T

(M is either M0 or M1 depending on the F function used). The property that
is exploited in the attack is that for the correct s-box output differential do,
〈dzi〉 = 〈dyi〉 for 0 ≤ i ≤ 3. Each equality leads to some information about the
key k10. In both M0 and M1 matrices, 3 out of the 4 equalities reveal unique
information, therefore it is sufficient to have only 3 equality tests instead of 4. In
a similar way, displacements introduced at x1, x2, and x3 would lead to leakages
in k11,k12, and k13 respectively. The collision set up phase is common for all
keys. However the restoring phases differ. Algorithm 1 shows the technique used
to generate the candidate keys given that the collisions have been set up.

Algorithm 1. find: Finding Key Byte k1i assuming collisions have been
setup

Input: i ∈ {0, 1, 2, 3}, the differential introducing input x and restoring input y
Output: S1

k1i
: Candidate Key Set for k1i

begin1
S1
k1i
← {}2

xi ← xi ⊕ dxi3

Restore collisions: Find y′
0, y

′
1, y

′
2 which causes collision in the first three accesses of4

the 2nd round
D ← output difference set corresponding to the input difference dxi5

foreach do ∈ D do6

(dz0 , dz1 , dz2 , dz3)
T ← (do , 0 , 0 , 0)T ·M07

if (〈dz0〉 = 〈dy0〉 and 〈dz1〉 = 〈dy1〉 and 〈dz2〉 = 〈dy2〉) then8
S1
k1i
← S1

k1i
∪ {do}9

end10

end11

end12

The Amount of Leakage: Let the number of bits revealed due to Equation 4 be
b. This means that b bits in each of dyi (where 0 ≤ i ≤ 3) is revealed. Since each
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Table 1. Expected Number of Candidate Key Bytes with Varying Cache Line sizes

CacheLine Size → 128 64 32 16 8
Matrix, S-box ↓ (b = 1) (b = 2) (b = 3) (b = 4) (b = 5)

M0, S0 81.9 40.9 20.4 10.2 5.1
M0, S1 64.4 32.2 16.1 8.0 4.0
M1, S0 81.9 20.4 10.2 5.1 2.5
M1, S1 64.4 16.1 8.0 4.0 2.0

dyi is a linear transformation of the difference output of the s-box, a few bits of
this output difference is obtained. Further, a valid input-output difference pair
in S0 has on average 1.28 input possibilities, while S1 has 1.007. Table 4 shows
the expected number of candidate keys obtained for a key byte (the size of the
set S1

k1i
in Algorithm 1) for different cache line sizes (assuming each element in

the table occupies one byte). As seen in the table, this depends on the matrix as
well as the s-box. The number of candidate keys can be reduced by repeating the
attack several times and taking the intersection between the sets. If q repetitions
are done then the expected number of candidate keys for k1i at the end of the
q repetitions is:

|Sq
k1i

| =
(|S1

k1i
|)q

256q−1
(6)

3.3 Attacking a Feistel Structure from Cache Traces

Attack on Feistel ciphers such as CLEFIA requires keys from more than one
round to be obtained. However two problems are likely to arise while recovering
keys for rounds other than the first round. This part of the section discusses
these problems.

Increase in the Number of Candidate Keys: For a key to be recovered, the
input and output difference of the F function is required. Consider the task of
recovering k2 in Figure 3. The input difference to the second round F function
is (y ⊕ F (x, k1)) ⊕ (y′ ⊕ F (x′, k1)), while the output difference obtained from
the cache access patterns is x⊕ x′. Thus it is seen that determining any k2i, for
0 ≤ i ≤ 3, depends on the value of k1. Let the number of candidate keys for
each byte of k1 be n1, then the number of possible values for an output byte of
F (x, k1) has an upper bound of n4

1. When n1 = 1 and after q repetitions, each
key byte k2i would have the same number of candidates as k1i, (ie. |Sq

k1|). For
n1 > 1, each output byte of F (x, k1) produces a different set of keys for k2i. The
union of these sets should be considered while determining k2i. The estimated

size of this union is less than 256(1− (1− |S
q
k1i
|

256 )n
4
1). In general, for round r > 1,

|Sq
kri

| ≤ 256

(
1−

(
1−

|Sq
k1i

|
256

)n4
r−1

)
(7)

We see that the expected number of candidates increases exponentially with
the round number. There are two ways to reduce this set.
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– Increasing q, the number of repetitions in rth round, would reduce the size
of the set |Sq

k11
|, thus reducing the number of candidates.

– A more effective approach is to increase the number of repetitions of the
previous rounds, thus reducing the value of nr−1. We see that the number
of keys in the first round most influences the size of the candidate key set
for kri and this influence reduces as the round number increases. The best
strategy would therefore be to have q for a round much larger than the q for
the following rounds. This would result in n1 	 n2 · · · 	 nr−1.

Control of the Round Inputs: Determining the key bytes for round r requires
collisions between the s-box accesses in rounds r and r + 1. For the Equations
(4) and (5) to be used we need to know the inputs (ie. x and y) to round r. This
becomes increasingly difficult as r increases. Secondly, even if we were able to
control these inputs, a cache hit in a table access in round r+1 could be due to
a collision with any of the accesses in the previous rounds, not necessarily with
the access in round r. Methods to improve controllability and reduce ambiguity
about collisions are influenced by the cipher’s structure. In the next section we
present several such strategies for CLEFIA.

4 The New Differential Cache Attack against CLEFIA

Just as in [12], the proposed attack first finds RK0 and RK1, then RK2⊕WK0
and RK3 ⊕ WK1, and finally RK4 and RK5. With this information, the key
expansion algorithm can be exploited (shown in [12]) to determine 121 bits out
of 128 bits of the secret key.

4.1 Determining RK0 and RK1

To find RK0, the memory accesses in the first and second round F0 functions
(Figure 1) are considered. This is similar to a two round Feistel structure (Figure
3) with the differential introducing input being P0 · · ·P3, while the restoring
input being P4 · · ·P7. Since in CLEFIA, each s-box is used 4 times per round,
a resulting cache hit in the second round would be due to collisions with any
of these four accesses. Let Iαi

Sβ be the index to the ith access to table Sβ in

round α. Thus a collision in I21S0 could be with one or more of the accesses I11S0,
I12S0, I1

3
S0, and I14S0. In order to apply Equations 4 and 5, we need to know

which of the four accesses has caused the collision. To prevent this ambiguity,
we ensure that all accesses in the first round are themselves colliding. That is for
S0, 〈I11S0〉 = 〈I12S0〉 = 〈I13S0〉 = 〈I14S0〉 and for S1, 〈I11S1〉 = 〈I12S1〉 = 〈I13S1〉 =
〈I14S1〉. We call such a state the 1-round collision state. Obtaining the 1-round
collision state requires finding the appropriate values for P2, P3, P8, P9, P10, and
P11.

To find RK1, F1 of the first two rounds are considered with differential in-
troducing inputs being P8 · · ·P11 and restoring inputs P12 · · ·P15. Algorithm 2
uses the find procedure described in Algorithm 1 to determine RK0 and RK1.
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Algorithm 2. Finding Candidate Keys for RK0 and RK1
Output: SRK0i

and SRK1i
: Respective candidate key sets for RK0 and RK1, where

i ∈ {0, 1, 2, 3}
begin1

Randomly select P0 and P12
(P2, P3, P8 · · ·P11)← One Round Collision State3

Set up collisions: Find P4, P5, P6 causing collisions in I21S0, I2
1
S1, I2

2
S0 respectively4

SRK00 ← find(0, P0 · · ·P3, P4 · · ·P7)5

SRK01 ← find(1, P0 · · ·P3, P4 · · ·P7)6

SRK02 ← find(2, P0 · · ·P3, P4 · · ·P7)7

SRK03 ← find(3, P0 · · ·P3, P4 · · ·P7)8

Find collision in I22S1 using P79

Set up collisions: Find P12, P13, P15 causing collisions in I23S1, I2
3
S0, I2

4
S1 respectively10

SRK10 ← find(0, P8 · · ·P11, P12 · · ·P15)11

SRK11 ← find(1, P8 · · ·P11, P12 · · ·P15)12

SRK12 ← find(2, P8 · · ·P11, P12 · · ·P15)13

SRK13 ← find(3, P8 · · ·P11, P12 · · ·P15)14

end15

Analysis: Let ρ be the number of encryptions required to determine (from the
side-channel information) if a memory access resulted in a cache hit or a cache
miss. Let b be the number of bits that are revealed in Equation 4 or 5. Obtaining
a collision requires ρ(2b−1) encryptions, because b bits can have 2b possibilities,
and if (2b − 1) choices fail to give a collision, then the final choice is the correct
one. Thus obtaining a 1-round collision state requires 6ρ(2b − 1) encryptions.
Algorithm 2 requires 3ρ(2b − 1) encryptions each to set up collisions in lines
4 and 10. Moreover, each call to find requires 3ρ(2b − 1) encryptions and line
9 requires ρ(2b − 1) encryptions. Thus in total, finding both RK0 and RK1
requires 37ρ(2b − 1) encryptions.

4.2 Determining RK2 ⊕ WK0 and RK3 ⊕ WK1

To obtain the candidate keys of RK2 ⊕WK0, the F0 functions in the second
and third rounds are considered with P4 · · ·P7 used as differential introducing
inputs, while P8 · · ·P11 used as restoring inputs. Just as in the first stage of the
attack, ambiguities about collisions may arise when cache hits are forced in the
tables in the third round F0. Therefore, before forcing hits in the third round,
the cipher is put in a 2-round colliding state. Besides the first access to each
table, a 2-round colliding state has all remaining accesses in collision.

〈I11S0〉 = 〈I12S0〉 = 〈I13S0〉 = 〈I14S0〉 = 〈I21S0〉 = 〈I22S0〉 = 〈I23S0〉 = 〈I24S0〉

for S0 and for S1,

〈I11S1〉 = 〈I12S1〉 = 〈I13S1〉 = 〈I14S1〉 = 〈I21S1〉 = 〈I22S1〉 = 〈I23S1〉 = 〈I24S1〉

In spite of the 2-round colliding state, ambiguities about the collisions still occur
in the third round F0 memory accesses. For example, a cache hit in I31S0 can
be forced by the plaintext byte P8. However, changing P8, may loose the cache
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Algorithm 3. Elimination Method
Input: Ia: memory access where a collision is required, Ib1 and Ib2: accesses which cause

undesirable collisions, C1 and C2: controlling plaintexts for Ib1 and Ib2 respectively
Output: Collision at Ia is desirable or undesirable
begin1

c1 ← C12
C1 ← (C1 + cache line size)mod table size3
if (Ia not in collision) then4

return “Undesirable Collision”5
end6
C1 ← c17
C2 ← (C2 + cache line size)mod table size8
if (Ia not in collision) then9

return “Undesirable Collision”10
end11
C1 ← (C1 + cache line size)mod table size12
if (Ia not in collision) then13

return “Undesirable Collision”14
end15
return “Desirable Collision”16

end17

hits in the two S0 accesses in F1 of the second round (Note that the cache
hits in the first round are not altered). Thus a collision in I31S0 may be due to
three reasons: the desirable cache hit with I21S0 and undesirable cache hits due
to collisions with I23S0 and I24S0. There are two ways to identify the ambiguous
cache hits:

– Elimination Method: This method uses a set of controlling plaintext bytes
C1 and C2. These inputs can control locations causing ambiguous cache hits
(I23S0 or/and I24S0). In the elimination method C1 is first varied and checked
if a cache hit persists. Then C2 varied and finally both C1 and C2 are varied.
A cache hit is desirable only if all three tests result in cache hits. Algorithm
3 presents this method. For the example above, Ia is I31S0, Ib1 is I2

3
S0 and Ib2

is I24S0. The controlling plaintexts C1 and C2 are P12 and P14 respectively.
– Probabilistic Method: In the example described above, assume that P8 is

ex-ored by a non-zero value d, which is less than the size of the cache line.
The small displacement of P8 ensures that if I31S0 was the desirable colli-
sion, then the collision would remain with probability 1. However the small
displacement of P8 would become a random change after the s-box, affecting
all four outputs of the first round F1. Thus the accesses to I23S0 and I24S0

would also change randomly. Therefore, if the collision at I31S0 is undesirable,
the collision would remain with probability (1 − (1 − 1

2b
)2). Sufficient con-

fidence in the correctness of the collision is obtained if this test is repeated
1/(1− 1

2b
)2 times as shown in Algorithm 4.

The elimination method, which gives a deterministic result, is the suited tech-
nique. However application of this method is not always feasible (as in the case of
determining RK3⊕WK1), in which case the probabilistic method will need to be
applied. Algorithm 5 gives the procedure for determining the byte (RK2⊕WK0).
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Algorithm 4. Probabilistic Method
Input: Ia: access where a cache hit is required, Pa: plaintext byte used to force cache hits in

Ia
Output: Cache hit at Ia is desirable or not
begin1

for i ∈ {0, · · · , 22b

(2b−1)2
} do2

Pa ← Pa ⊕ i3
if Ia not in collision then4

return “Undesirable Collision”5
end6

end7
return “Desirable Collision”;8

end9

Algorithm 5. Finding Candidate Keys for RK2⊕WK0
Output: S(RK0⊕WK0)i

): Candidate Key Set for (RK0⊕WK0)i, where i ∈ {0, 1, 2, 3}
begin1

Put cipher in Two round colliding state2

Set up collisions: Find P8, P9, P10 causing collisions in I31S0, I3
1
S1, I3

2
S0 respectively3

(using elimination method)
S(RK0⊕WK0)0 ← find(0, P4 · · ·P7, P8 · · ·P11)4
S(RK0⊕WK0)1 ← find(1, P4 · · ·P7, P8 · · ·P11)5
S(RK0⊕WK0)2 ← find(2, P4 · · ·P7, P8 · · ·P11)6
S(RK0⊕WK0)3 ← find(3, P4 · · ·P7, P8 · · ·P11)7

end8

To determine RK3 ⊕ WK1, the second and third round F1 functions are
considered with P12 · · ·P15 as the difference introducing inputs, while P0 · · ·P3

the restoring inputs. Starting from the 2-round colliding state, ambiguities in
collisions in the third round F1 are due to collisions with the tables of F0 of the
third round. Using the elimination method would imply P8 to P15 be used as
controlling inputs. But changing P8 would also alter the cache hit in the third
round F1. Therefore, the elimination method is not feasible and probabilistic
method needs to be applied.

Analysis: For the elimination method, in addition to the ρ(2b − 1) encryptions
that are required to find a collision, 3ρ additional encryptions are necessary to
eliminate each of the undesirable collisions. Therefore in all ρ(2b+5) encryptions
are required to correctly identify a collision. In Algorithm 2, setting up collisions
will therefore require 3ρ(2b + 5) and each execution of find would need an ad-
ditional 3ρ(2b + 5). In total, there would be 15ρ(2b + 5) encryptions required to
find RK0⊕WK0.

For RK3⊕WK1, the probabilistic method is used. To determine the correct

collision with significant probability, ρ 2b+1

(2b−1)2 encryptions are required in addi-

tion to the ρ(2b− 1) encryptions. Thus obtaining the whole of RK3⊕WK1 can

be done in 16ρ((2b − 1) + 22b+1

(2b−1)2 ).
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Fig. 4. Analysis of Timing Side Channel on Intel Xeon (E5606)

4.3 Determining RK4 and RK5

To compute the candidate keys for RK4, we use the 3rd and 4th round F0
functions with P8 · · ·P11 as the difference introducing inputs and P12 · · ·P15 the
restoring inputs. The initial state is a 2-round colliding state and all tables in F0
of the third round are also in collision. The undesirable collisions occurring with
F1 of round three can be detected by the probabilistic method. The number of

encryptions required for RK4 is be found to be 16ρ((2b−1)+ 22b+1

(2b−1)2 ). Candidate
keys for RK5 is similarly determined from the 3rd and 4th round F1 functions
with P0 · · ·P3 as the difference introducing inputs and P4 · · ·P7 the restoring
inputs. In this case however, more undesirable collisions can occur due to F0
in rounds three and four. Due to this, the number of encryptions required is

increased to 16ρ((2b − 1) + 24b+2

(2b−1)4 ).

5 Distinguishing between a Cache Hit and Miss

The attack on CLEFIA presented in the previous section relies on distinguishing
between a cache hit and a miss. The number of encryptions (ρ) required to make
this distinction depends on the form of side-channel used. In this section we
determine ρ for two side-channels namely power consumption and timing.

Cache Access Patterns from Power Consumption: In [12], the attack was
mounted on an embedded PowerPC in the Xilinx XC2VP30 FPGA present
on the SASEBO side channel attack evaluation board [13]. Cache access pat-
terns were identified by correlating the power trace obtained with templates.
For a match, a correlation value of 0.997 was obtained, compared to 0.8 for a
mismatched power trace. Thus a single trace (ρ = 1) is sufficient to obtain cache
access patterns.

Cache Access Patterns from Timing: Obtaining side channel distributions from
timing requires several encryptions to be done. The distinguisher is a shift in
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the timing distribution for a cache hit compared to the cache miss distribution.
For example, the timing distributions for a hit and miss at I12S0 is shown in
Figure 4(a). The distributions are Gaussian and a noticeable difference between
the distributions is observable. On an average, when there is a cache hit in
I12S0, CLEFIA takes around 100 clock cycles longer than when a miss is present
in I12S0, assuming that all encryptions start with a clean cache. The distance
between the cache hit and miss distributions represents our confidence in the
measurement. A small distance implies low confidence about the correctness of
the measurements (and vice-versa). Figure 4(b) shows the distance between a
cache hit and a cache miss distribution as the number of measurements increase.
We find that the difference is around 60 clock cycles when 210 encryptions are
made. This difference increases as the number of measurements increase until
it saturates at around 114 clock cycles. A ρ of 210 ensures with certainly the
correct detection of the cache hit.

6 Effect of Cache Line Size on the Number of Encryptions

In the cipher’s implementation, if a table occupies 2b cache lines, then 2b − 1
encryptions are required to identify a collision. Further, if 2δ elements share a
common cache line then there still remains an uncertainty of δ bits.

With increase in the size of the cache line, the table (which we assume to have
the same size) occupies fewer lines in memory (b reduces), consequently fewer
number of encryptions are required to identify a collision. On the other hand, an
increase in the cache line size would increase δ causing an increase in the size of
the candidate key set (as seen in Table 4). The attack reduces this uncertainty
by repeating the experiment and taking intersections between the candidate key
sets obtained. Thus we see that the cache line size has opposite effects on the
number of encryptions required to find a collision and the number of encryptions
required to reduce the candidate key set. Figure 5 shows the effect of cache line
size on the number of encryptions required on average to identify RK0 and
RK1 uniquely. This is assuming a power side-channel adversary where ρ = 1.
As seen from the graph large cache lines are more prone to being attacked as they
require fewer encryptions to be monitored. This can also be seen in Figure 6,
which estimates the entropy of the remaining key space with increasing number
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of encryptions for the entire attack (assuming ρ = 1). This being said, if the
cache line was large enough to fit the entire table then every access to the table
(except the first) would result in a cache hit, and therefore the attack would fail.

7 Countermeasures Suited for Large Cache Lines

Although there have been several countermeasures proposed against cache at-
tacks (such as in [6,11,16]), not all of them guarantee protection. Countermea-
sures that do guarantee protection either disable the cache, do not use tables,
or implement the cipher to fit tables within a single cache line. Disabling the
cache is known to slow down an execution 100 times [16] and affects the entire
system, therefore is not an option. The other countermeasures too have signif-
icant performance overheads. In this section we compare these overheads and
also suggest splitting of tables as a countermeasure for large cache lines.

Using Single Cache Lines: In [12], techniques were presented to implement CLE-
FIA’s s-boxes using small table of 32 bytes. This table is small enough to fit into
a single cache line, thus except for the first access to the table, all other memory
accesses results in cache hits. However, the small tables implied substantial num-
ber of logical operations were required in addition to the table lookups; adding
to the overhead. Naturally, when a cache line of larger dimensions is available,
one would attempt to increase the number of tables to fit in the entire cache
line. To the countermeasure in [12], we have added more tables, to adapt it for
a 64 byte cache line (See Appendix-D).

Split Tables: Consider a table T having t elements with each element occupying u
bits. Let the size of the cache line be c bytes. Then the table occupies s = tu

8c lines
in cache. Each of the t elements in the table is split into s parts and each part is
put into a different table. There are therefore s tables, each of c bytes. To access
an s-box element, all tables require to be read in order to obtain the element,
therefore memory accesses are no longer dependent on the key protecting the
implementation against cache attacks.

We found that on standard Intel platforms, the number of cache misses has a
dominating influence on the execution time of a block cipher. In fact on an Intel
Core 2 Duo platform, a cache miss has an average overhead of 10 clock cycles
compared to a cache hit. If the size of the cache line (c) is large with respect
to the table size (that is, the table occupies few cache lines), then with high
probability the entire table is loaded into memory during the execution.

In the countermeasure proposed, the cumulative sum of the sizes of the s tables
equals that of T . If we assume a large cache line exists, then the countermeasure
has the same number of cache misses as the non-protected implementation. The
only overhead of the countermeasure is in the non cache miss executions. This
is also kept minimum if s is small, as is the case.

Table 7 shows the overheads of various countermeasures applied on CLEFIA
implementation2 for a cache memory with 64 byte cache line.

2 http://www.sony.net/Products/cryptography/clefia/download/data/clefia ref.c
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Table 2. Execution Time for Different Implementations of CLEFIA on an Intel Core
2 Duo Processor

Implementation Clock Cycles Overhead

Reference Code (RC) 13452 -
RC without tables 47032 3.5

RC with countermeasure from [12] for 32 byte cache lines 24446 1.81
RC with countermeasure from [12] for 64 byte cache line 22356 1.66

Split tables 16235 1.2

8 Conclusion

In this paper we presented an attack on CLEFIA, which is not restricted to sys-
tems having small cache lines. The work shows that while existing attacks fail on
systems with large cache lines, better exploitation of the differential properties
of the non-linear layers and the diffusion properties of the linear layer inside
the rounds, still lead to attacks. The work analyzes the effect of cache line size
on the attack complexity, showing that systems with large cache lines are more
prone to being attacked. This is supported by theoretical analysis of the time
and space complexity of the attack. Further, techniques are suggested for CLE-
FIA to reduce these difficulties. The techniques presented in the paper can easily
be adopted to break other ciphers such as CAMELLIA that have Feistel struc-
tures. Finally countermeasures for the attack are analyzed and their overheads
compared on a standard computing platform.
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Appendix A: Number of Encryptions for Key Recovery

Table 3 summarizes the number of encryptions required to perform one repetition
for a key (q = 1). In the table b is the number of bits revealed from the cache
access profiles and l = 2b − 1.

Appendix B: Plotting Figure 5

After q repetitions, the expected size of RK0i for 0 ≤ i ≤ 3 is |Sq
RK0i

|/256q−1.
Therefore for the entire RK0 the set of candidate keys is

|Sq
RK00

|
256q−1

×
|Sq

RK01
|

256q−1
×

|Sq
RK02

|
256q−1

×
|Sq

RK03
|

256q−1

To obtain a unique RK0, q should be found so that the above expression reduces
to 1. In a similar way the trend for RK1 is computed.

http://eprint.iacr.org/
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Table 3. Number of Encryption required for q = 1

Key Encryptions Key Encryptions

RK0 21ρl RK1 16ρl

RK2⊕WK0 15ρ(2b + 5) RK2⊕WK1 16ρ
(
l + 22b+1

l2

)

RK4 16ρ
(
l + 22b+1

l2

)
RK5 16ρ

(
l + 24b+2

l4

)

Appendix C: Plotting Figure 6

Figure 6 shows the estimated number of keys remaining versus the number of
encryptions required. This appendix presents how the graph is obtained.

Estimating the Key Space Reduction: Table 4 gives the average number of can-
didate keys per byte for the F functions when q = 1. For example, when b = 2,
each output byte for F0 in the first round has (40.9× 32.2)2 number of options.
However each output byte for F0 can take only 256 values. Therefore in this
case n4

1 = 256 in Equation 7 resulting in no key space reduction for the following
round. The key space can be reduced by increasing q, which would then reduce
the value of n4

1. In a similar way, the number of outputs for F0 in the second
round is used to compute the possible keys for the third round. We therefore
obtain the key sets Sq

RK0, S
q
RK2⊕WK0, and Sq

RK4. Similarly F1 is analyzed to
obtain Sq

RK1, S
q
RK3⊕WK1, and Sq

RK5.
Every possible combination formed by the keys in Sq

RK0, S
q
RK1, S

q
RK4, and

Sq
RK5 produces a candidate CLEFIA key, therefore the product of these sets

have to be considered.

Encryptions per Round : This appendix gives details about the break up of
the number of encryptions per round and the corresponding number of keys
remaining.

Appendix D: Adapting the Countermeasure in [12] for 64
byte Cache Lines

The sboxes in CLEFIA are designed differently. S0 is composed of four sboxes
SS0, SS1, SS2, and SS3; each of 16 bytes. The output of S0 is given by:

βl = SS2[SS0[αl]⊕ 2 · SS1[αh]]

βh = SS3[SS1[αh]⊕ 2 · SS0[αl]]
(8)

,where β = (βh|βl), α = (αh|αl), and β = S0[α]. In [12], a pair of the 16 byte
sboxes share a 16 byte table. So all 4 sboxes require 32 bytes. For 64 byte cache
lines, the sharing is not required and each sbox can exclusively use 16 bytes of
memory. This produces a small speedup.

For the sbox S1, the output corresponding to the input byte α is given by
g((f(α))−1), where g and f are affine transforms and the inverse is found in the
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Table 4. Expected Number of Candidate Keys with Varying Cache Line sizes

Cache Line Size Number of Repetitions Encryptions Key Space Remaining
Round 1 Round 2 Round 3 Required

8 1 1 1 3303 284

2 1 1 4450 261

2 2 1 5518 220

2 2 2 6606 27

16 1 1 1 1703 292

2 1 1 2258 271

2 2 1 2830 228

2 2 2 3406 27

32 1 1 1 903 2100

2 1 1 1162 272

2 2 1 1486 253

2 2 2 1806 238

3 2 2 2065 214

3 3 2 2389 28

3 3 3 2709 27

64 1 1 1 503 2108

2 1 1 614 282

3 1 1 725 272

3 2 1 925 261

3 3 1 1125 244

3 3 2 1317 218

3 3 3 1509 27
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Fig. 7. Composite Field Implementation of S1 for 64 byte Tables

field GF (28). To fit this into a 32 byte cache line, [12] used composite fields,
and had some of the composite field operations such as inversion and multipli-
cation by a constant stored in tables. However due to the 32 byte constraint,
many operations were still performed by logical equations, resulting in significant
overheads. Since in our case, the cache line is larger so more operations can be
done using tables. Figure 7 shows our modified composite field implementation
for S1. The lighter shaded boxes are tables which were also implemented in [12],
while the darker boxes are new tables for 64 byte cache lines. The squaring is
done using a table of 16 bytes and part of the GF (24) multiplication is done
using a single 32 byte table. This table stores the product of a 4 bit element
and a 2 bit element. Thus a GF (24) multiplication is done with only two table
accesses.
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