
Effective Switch Memory Management in OpenFlow
Networks

Anilkumar Vishnoi, Rishabh Poddar, Vijay Mann, Suparna Bhattacharya
{avishnoi, rishpodd, vijamann, bsuparna}@in.ibm.com

IBM Research, India

Abstract

OpenFlow networks require installation of flow rules in a limited
capacity switch memory (mainly Ternary Content Addressable Mem-
ory or TCAMs) from a logically centralized controller. A controller
can manage the switch memory in an OpenFlow network through
events that are generated by the switch at discrete time intervals.
Recent studies have shown that data centers can have up to 10,000
network flows per second per server rack today. Increasing the
TCAM size to accommodate these large number of flow rules is
not a viable solution since TCAM is costly and power hungry. Cur-
rent OpenFlow controllers handle this issue by installing flow rules
with a default idle timeout after which the switch automatically
evicts the rule from its TCAM. This results in inefficient usage of
switch memory for short lived flows when the timeout is too high
and in increased controller workload for frequent flows when the
timeout is too low.

In this context, we present SmartTime - an OpenFlow controller
system that combines an adaptive timeout heuristic to compute ef-
ficient idle timeouts with proactive eviction of flow rules, which
results in effective utilization of TCAM space while ensuring that
TCAM misses (or controller load) does not increase. To the best
of our knowledge, SmartTime is the first real implementation of
an intelligent flow management strategy in an OpenFlow controller
that can be deployed in current OpenFlow networks. In our experi-
ments using multiple real data center packet traces and cache sizes,
SmartTime adaptive policy consistently outperformed the best per-
forming static idle timeout policy or random eviction policy by up
to 58% in terms of total cost.

Categories and Subject Descriptors: C.2.4 [Distributed Systems]:
Network operating systems

General Terms: Performance

Keywords: OpenFlow, idle timeout, Software Defined Networking

1. INTRODUCTION
Software defined networking using protocols such as OpenFlow

[19] is quickly gaining popularity and adoption in modern data cen-
ters [16,17]. OpenFlow provides flexibility through programmable
route computation as the control plane is physically decoupled from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’14, May 26-29, 2014,Mumbai, India
Copyright 2014 ACM 978-1-4503-2737-4 ...$15.00.

all forwarding switches (the data plane). However, this flexibility
comes at the cost of placing significant stress on switch state size as
OpenFlow requires installation of flow rules in a limited capacity
switch memory (mainly Ternary Content Addressable Memory or
TCAMs). Most commercial OpenFlow switches have an on-chip
TCAM with a size that accommodates between 750 to 2000 Open-
Flow rules [4, 10]. The state of the art Broadcom chipset, which is
used by most commercial switches today, has a TCAM that accom-
modates 2000 OpenFlow rules [15]. Recent studies have shown
that data centers can have up to 10,000 network flows per second
per server rack today [22]. Increasing the TCAM size to accom-
modate flow rules for these large number of flows is not a viable
solution since TCAM is costly and power hungry.

To overcome the problem of limited switch memory, OpenFlow
specification allows each OpenFlow flow rule to have an idle time-
out period which controls its eviction from the switch memory. If
no packet matches a given flow rule for a period equal to its idle
timeout period, the flow rule is removed from the switch memory.
This idle timeout is set by the controller before it sends a flow rule
to the switch for installation.

However, in the absence of an intelligent way to figure out what
flows are frequent or short lived, a controller usually installs flow
rules with a default idle timeout value (usually 5 seconds) or the
minimum timeout value specified in the current OpenFlow specifi-
cations (1 second) or infinite timeout. Furthermore, almost all the
current OpenFlow controller implementations [3,8,12] install flow
rules for all flows with the same idle timeout. Studies show that
data center flows vary widely in their duration with almost 50% of
flows being less than 1 second duration and 80% of the flows being
less than 10 seconds [21]. This results in inefficient usage of switch
memory for short lived flows when the timeout is too high and in
increased controller workload for frequent flows when the timeout
is too low.

There has been little work on dynamic timeout assignment and
switch memory management approach that will work in real Open-
Flow networks. Given the extremely small TCAM size in most
commercial OpenFlow switches, and TCAM being an extremely
costly resource, this problem needs to be addressed to ensure wide-
spread deployment of OpenFlow switches in production networks.
A controller can manage the switch memory in an OpenFlow net-
work through events that are generated by the switch at discrete
time intervals. This includes the “packet-in" event on a cache miss
and a “flow removal" event on a flow rule expiry. In this context,
we present SmartTime - an OpenFlow controller system that em-
ploys an adaptive heuristic to compute idle timeouts for flow rules
which results in effective utilization of TCAM space while ensur-
ing that the misses (or controller load) reduce as compared to a
baseline static policy. It takes into account the current TCAM uti-
lization level and the likelihood of a flow appearing again in the

network while deciding the flow rule idle timeout. It also leverages
proactive eviction of flow rules in case the TCAM is close to its full
capacity. Specifically, we make the following contributions in this
paper:
C1: Design and implementation of SmartTime in two popular Open-
Flow controllers: Floodlight [3] and OpenDaylight [8]. To the best
of our knowledge, SmartTime is the first real implementation of an
OpenFlow controller system that combines adaptive idle timeouts
for flow rules with a proactive eviction strategy based on current
TCAM utilization level and can be deployed in current OpenFlow
networks.
C2: Adaptive idle timeout heuristic based on analysis of real data
center packet traces: We analyze real data center packet traces and
design our adaptive strategy based on some key observations. We
observe that many flows in the network never repeat, and the cur-
rent minimum timeout value of 1 second for OpenFlow flow rules
is too large for such flows. We recommend a smaller minimum
timeout value for OpenFlow in the range of 10-100 milliseconds.
C3: Validation of SmartTime using real data center packet traces:
We validated SmartTime by replaying four real data center packet
traces for two representative cache sizes and compare it with mul-
tiple static idle timeout policies and random eviction policies. In
all our experiments, SmartTime adaptive policy was either the best
performing or second best performing policy across all traces and
cache sizes. In 67 out of 72 experiments, SmartTime adaptive pol-
icy outperformed the best performing static idle timeout policy or
random eviction policy by up to 58% in terms of total cost.

The rest of this paper is organized as follows. Section 2 gives
an overview of related research. In section 3 we present a for-
mal description of the problem of predicting idle timeout for flow
rules. Section 4 presents our analysis of data center network traces,
which forms the basis of our adaptive idle timeout heuristic. In
section 5, we describe our implementation of SmartTime using the
Floodlight OpenFlow controller. We provide an experimental eval-
uation of SmartTime in Section 6. Finally, we conclude the paper
in Section 7.

2. RELATED WORK
While much research attention has been devoted to compacting

the representation of flow rules in order to reduce TCAM space [13],
the problem of choosing optimal timeouts for flow rules in a real
OpenFlow network remains largely under-explored so far.

Zarek et al. [23] have observed, using simulations, that TCAM
miss rates do not improve significantly beyond a certain timeout
value and that this timeout value is different for different traces,
which corroborates our findings on the need for an adaptive strat-
egy. They proposed combining fixed uniform idle timeout values
(across all flow rules) with proactive eviction messages from the
controller. However, their implementation of the strategy requires
detection of TCP flow completion by matching on TCP header
flags (SYN, RST, FIN) and such matching is not supported in cur-
rent OpenFlow switch implementations that support OpenFlow 1.0
specification. They also explore the use of random and FIFO evic-
tion policies, which are implementable but less effective in the ab-
sence of a mechanism to take into account the differing character-
istics of different flows.

Ryu et al. [20] presented an adaptive strategy called MBET
(Measurement Based Binary Exponential Timeout) for timing out
Internet flows in a router. Their approach relies on persistency in
intra-flow packet inter-arrival times. It assigns a high timeout to
each new flow and then successively reduces it as long as the mea-
sured throughput exceeds a given threshold. A similar solution has
also been proposed in [14] to examine flows in an SDN switch

and predict if and when they are likely to be evicted. Both these
solutions have been implemented in simulators. Unlike our pro-
posed adaptive heuristic, they can not be implemented in current
OpenFlow networks because of the following reasons:
R1: OpenFlow specification does not allow altering the idle time-
out of a flow rule already installed in a switch.
R2: Even if OpenFlow allowed changes to the idle timeout of an
existing flow rule, these strategies will require extensive polling by
the controller which can be prohibitive even in a medium sized data
center.

3. PROBLEM DESCRIPTION AND FORMU-

LATION
In this section we formulate the problem of minimizing cost of

a TCAM miss in an OpenFlow network. Figure 1 illustrates the
importance of choosing the right idle timeout when installing a flow
rule in a switch. If the timeout value is too high for a given flow

rule, the flow rule sits in the switch TCAM for a long time, wasting
valuable TCAM space, which could be utilized by another flow

rule. Such large timeouts result in high TCAM utilization and may
eventually lead to packet drops when the TCAM becomes full. In
order to avoid such packet drops, proactive eviction of flow rules
that are chosen either randomly or in FIFO order by the controller
has been proposed in earlier research [23].

On the other hand, if the timeout value is too low for a given
flow rule, the flow rule gets expired from the switch too quickly.
As per OpenFlow specification, any subsequent packet that would
have matched this flow rule, results in a TCAM miss and gets redi-
rected to the OpenFlow controller. The OpenFlow controller will
then install an appropriate routing flow rule (as per its forward-
ing policy implementation) in the switch which gets applied to the
packet that was sent to controller as well as to subsequent packets
matching that flow rule. However, this additional round trip to the
controller is costly in terms of latency (for the few initial packets
of a flow). Authors in [10] point out that while switch latencies
are in microseconds, a single round trip to controller results in an
additional latency of around 10-20 milliseconds. Furthermore, this
additional round trip also increases the controller workload, which
can prove to be a bottleneck in a large data center.

Assuming that during a short time interval of duration T , for a
TCAM of size S:

F Number of flows
N(f) Number of packets for flow f = N(f, T)
IA(f) Interarrival time for flow f
IT (f) Idle timeout for flow f
Umax Maximum fraction of TCAM utilization desired

(allowing headroom for flow bursts)
Eevicted(f) Event wherein a flow f is evicted from the TCAM
Eexpired(f) Event wherein a flow f naturally expires

i.e. IA(f) > IT (f)
Pmiss(f) Probability that there is a miss in the switch TCAM for flow f
Uheld(f) = 1, if flow f is held in TCAM (i.e. its flow rule has not expired

or been evicted)
= 0, otherwise

Fheld Number of flow (rules) held in the TCAM
=

∑

f

Uheld(f)

Mavg Average number of misses in switch TCAM
Pevict Probability that a miss in the switch TCAM will lead to the

eviction of some installed flow, e.g. if the TCAM is full
= P (Fheld ≥ Umax)

Mevict Average number of evictions in the switch TCAM
= PevictMavg

Cinstall Cost of installing a flow in the switch TCAM in the event of a miss
(including the overhead of an additional round trip to the controller)

Cevict Additional overhead of evicting a flow from the switch
TCAM before an installation

Cmiss Cost of a miss in the switch TCAM

IBM Confidential Restricted 06/2012

Flow%Drops%&%TCAM%U0liza0on%

C
o
n
tr
o
ll
e
r%
%W

o
rk
lo
a
d
%a
n
d
%F
ir
st
%P
a
ck
e
t%
La
te
n
cy
%

Very%high%0meBout%%

Very%low%0meBout%

%

%%%Op0mal%0me%out%

(opera0ng%region)%

Figure 1: A low idle timeout will result in higher TCAM miss (higher con-
troller workload and packet latencies), whereas a high idle time-
out will result in higher TCAM utilization and flow drops (or
proactive flow evictions)

Our Problem:

• Objective: Choose IT (f) to reduce average cost1 incurred
in every interval T :

Cavg = CmissMavg (1)

Note that the cost of a miss is equal to the cost associated
with an additional round trip to the controller and the cost
of installing a new flow rule in the switch TCAM. Further,
the controller may decide to optionally evict an existing flow
rule, in case of some misses (for example, this could be done
when the TCAM utilization is 100% or it crosses a particular
threshold). Therefore,

Cmiss = Cinstall + PevictCevict (2)

Average cost can then be represented as:

Cavg = (Cinstall + PevictCevict)Mavg (3)

= CinstallMavg + CevictMevict (4)

where average misses is computed as follows:

Mavg =
1∑

f

N(f)

∑

f

N(f)Pmiss(f) (5)

For a flow f , a miss can occur either if its flow rule naturally
expired (interarrival time exceeded idle timeout), or if it was
forcefully evicted from the switch TCAM by the controller
(for example, to accommodate some other flow, as described
above). Thus,

Pmiss(f) = P (Eexpired(f) ∨ Eevicted(f)) (6)

= P (IA(f) > IT (f) ∨ Eevicted(f)) (7)

and average misses can thus be represented as

Mavg =
1∑

f

N(f)

∑

f

N(f)[P (IA(f) > IT (f)∨Eevicted(f)]

(8)

• Subject to: TCAM size (utilization) constraint

Fheld

S
≤ Umax (9)

1We do not consider the cost of hits here as they are characteristic
of the network elements and are unavoidable

where,

E[Fheld] =
∑

f

E[Uheld(f)]

=
∑

f

1− Pmiss(f)

= F −
∑

f

P (IA(f) > IT (f) ∨ Eevicted(f)

(10)

3.1 Why the solution is non-trivial
The above formulation indicates that we should choose IT (f)

such that:

• high packet rate flows (high N(f) in a given interval T) have
a very low miss probability in order to keep average misses
down (from Equation 8), while

• low packet rate flows have a very high likelihood of misses,
to help meet the TCAM space constraint (Equations 8, 9 and
10).

In the extreme case, we could set IT (f) → 0 (or the minimum
supported timeout) for the K lowest packet rate flows observed
(where K is chosen to meet the TCAM size constraint, e.g. K ≥

F − UmaxS) and set IT (f) → ∞ (or the maximum supported
timeout) for all the remaining (higher packet rates) flows in order
to minimize misses.

However, any static policy, however optimal in a given interval,
does not adapt well to the changing dynamics of packet flows, we
have observed. For example, if a flow is assigned a high timeout
based on the above logic but is no longer frequent, it still continues
to occupy TCAM space as the controller does not get notified until
the timeout expires. Further, if a flow is so frequent that its rule
never has a miss in the switch, then the controller does not get any
notifications either, so it cannot distinguish this flow from those that
are no longer frequent.

Hence, for a policy to be responsive to changes in traffic (esp
bursty flows) it needs to adapt to actual inter-arrival times more
smoothly and result in rule evictions once in a while even for high
data rate packets. As a result, curiously enough, we have to strike
a balance between making timeouts a non-decreasing function of
inter-arrival times for optimality reasons versus making them pro-
portional to inter-arrival times to ensure responsiveness.

Moreover, in conjunction with adaptive timeouts for flows, proac-
tive evictions can be employed usefully to avoid packet drops (as
proposed in [23]), which would otherwise lead to repeated misses
in the switch TCAM until space becomes available for installation
of the flow. To keep average misses down, these evictions should
be as infrequent as possible (from Equation 8), which is easily
achieved by evicting only when the TCAM crosses an acceptable
threshold. Additionally, the flow to be evicted needs to be selected
carefully, and should ideally be one that has the lowest likelihood
of being observed in the near future, and hence expected to have
naturally timed out before the arrival of the next packet. The evic-
tion of such a flow would serve to free up valuable TCAM space
well in advance without adversely impacting the number of misses.
However, as described earlier, it may not always be possible to dis-
tinguish such a flow from a frequent one, and leading to evictions
for high data rate packets once in a while.

In summary, the overall problem becomes challenging to solve
in real data centers because of the following reasons:

• First, all the parameters for every flow are not known upfront.

Number of packets (binary log scale)

N
u
m

b
e
r

o
f
fl
o
w

s

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

1 2^5 2^10 2^15

(a) Number of packets across
flows

Reuse distance (#unique flows seen before a flow repeats)

N
u
m

b
e
r

o
f
fl
o
w

s

0 100 200 300 400 500

0
2
0

4
0

6
0

8
0

(b) Reuse distance histogram

Figure 2: Packet trace analysis

• Second, the parameters are likely to vary dynamically (phases
and bursts can occur), and flows come and go. A static (point-
in-time) optimization is unlikely to be responsive to these
changes.

• Third, at the controller, we only get indication about a flow’s
dynamics or parameters on a miss.

To gain more insight on these practical considerations, we next
study flow characteristics of publicly available data center network
traces.

4. TRACE ANALYSIS
We analyze real packet traces from university data centers used

in [22] and publicly available at [1]. These data centers serve the
students and administrative staff of the university and provide a
variety of services such as system back-ups, hosting distributed
file systems, E-mail servers, Web services (administrative sites and
web portals) and multicast video streams.

Our analysis treats packets between a given source and destina-
tion pair as belonging to the same flow (rule) irrespective of their
inter-arrival times. As can be observed from Fig 2(a), there is a
wide variation in the number of packets across flows. About 15%
of flows have just 1-2 packets. To avoid wasting TCAM space,
the idle timeout should be set to a very small value for such flows.
This corroborates a similar finding previously reported by Ryu et
al. [20] in the general context of adaptive timeouts for detecting
Internet flows. The authors of [20] classified flows as small (1-2
packets), medium (between 2-10 packets) and large (greater than
10 packets). They also noted a high variability in flow duration and
size (spanning 4 orders of magnitude).

4.1 Reuse distance analysis
In traditional cache optimization, a reuse distance analysis is of-

ten used to characterize memory access locality of a workload (pro-
gram) in a hardware independent manner. The reuse distance (also
known as LRU stack distance) is the number of distinct elements
referenced between consecutive references to the same data [11,
18]. We adopt a similar approach in keeping with our view of the
switch TCAM memory as a cache for flow rules (which must be re-
trieved from the controller on a miss). The reuse distance of a flow
is defined as the number of distinct flows arriving at the switch be-
tween two consecutive packets matching the flow. Note that unlike
reuse distance in program locality analysis, the workload of flows
processed by the switch does not correspond to a single application
or source. It just characterizes a given network trace of traffic at the
switch.

Fig 2(b) is a histogram of the average reuse distance of the flows
seen in the trace after filtering out flows that do not repeat. We

80th percentile flow interarrival

N
u
m

b
e
r

o
f
fl
o
w

s

0.0e+00 1.0e+08 2.0e+08 3.0e+08

0
5
0
0

1
0
0
0

1
5
0
0

(a) 80th percentile

log(80th percentile flow interarrival time)

N
u
m

b
e
r

o
f
fl
o
w

s

3 4 5 6 7 8

0
1
0

2
0

3
0

4
0

5
0

(b) 80th percentile on log scale

Figure 3: Flow inter-arrival times: x-axis is in microseconds

observe that a large percentage of flows that repeat seem to have a
reuse distance within 150, which is much smaller than the size of
the switch TCAM. This indicates that the workload is well suited
for an LRU replacement policy. However, although the effective-
ness of an LRU policy has previously been empirically confirmed
using simulations, directly implementing LRU in an OpenFlow switch
is impractical.

Why LRU is not suitable: Any LRU algorithm would require
real-time information about the usage pattern of a cache entry. An
OpenFlow enabled switch has this usage information and can, in
theory, implement an LRU eviction strategy. However, one of the
founding principles of OpenFlow, has been to delegate all intelli-
gence and control functions to the OpenFlow controller (the control
plane). This enables the switch to be manufactured out of cheap
commodity hardware (ASICs). Therefore, OpenFlow specification
forbids installation or removal of a flow rule entry by the switch
itself. Implementing an LRU policy at the OpenFlow controller is
also infeasible since the controller can not fetch real-time informa-
tion about the usage pattern of a flow rule entry that is currently
installed in a switch. A controller can query the switch periodically
to find out the active time of various flow entries in the switch.
However, the active time of a flow entry in the switch includes the
time for which it has been idle and hence can not be used to im-
plement an LRU eviction strategy. Furthermore, this polling, can
have significant overheads and is unlikely to scale even for medium
sized data centers.

Could an LRU-like effect can be achieved by dynamically pre-
dicting idle timeouts for flows at the controller? To help explore
this possibility, we next analyze interarrival times across flows.

4.2 Flow interarrival times (IAT) across flows
We record interarrival times for packets corresponding to a flow

when they are more than 1 ms apart. 1 ms is chosen as the flow
boundary to ensure that we consider 1 ms and above as legitimate
idle timeout values. Here are a few observations based on the re-
sults of the analysis:

The 80th percentile of per flow interarrival times spans a wide

range: For each flow we determine the 80th percentile of its in-
terarrival times (i.e. the lowest setting of idle timeout at which
80% of the packets for the flow arrive before the flow rule times
out). 80% is chosen to ensure that a wide majority of the packets
for a flow match the corresponding flow rule without resulting in
a miss. Packets with interarrival times higher than 80th percentile
may represent packets that repeat after a long a gap and setting an
idle timeout equal to these values may result in a flow rule sitting
idle in the TCAM for too long. The histogram of these values (refer
Figure 3(a)) shows a good number of flows with small interarrival

Interarrival time

F
re

q
u
e
n
c
y

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

(a) Flow rule 1722 - low IATs

Interarrival time

F
re

q
u
e
n
c
y

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
1
0
0

2
0
0

3
0
0

(b) Flow rule 1916 - IATs
spread uniformly in clusters
till 500 ms

Interarrival time

F
re

q
u
e
n
c
y

0 500000 1000000 1500000

0
5
0

1
0
0

1
5
0

(c) Flow rule 74 - clusters of
IATs far apart

Interarrival time

F
re

q
u
e
n
c
y

1e+05 2e+05 3e+05 4e+05 5e+05

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

(d) Flow rule 2135 - discrete
IATs far apart

Figure 4: Differences in the magnitude and shape of the histogram of flow
interarrival times across flows - x-axis is in microseconds

times (below 500ms), but the long tail indicates that the interar-
rival times vary over a very wide range for the rest of the flows
(spanning multiple orders of magnitude, going all the way up to
300 seconds). This can be seen more clearly in Figure 3(b)where
the same histogram is plotted against a log scale for the interarrival
times.

Even the shape of interarrival time histograms can be very dif-

ferent for different flows: Fig 4 illustrates the histogram of inter-
arrival times corresponding to four sample flow rules which match
a large number of packets in the observation interval for which the
trace was collected. Note the difference in the patterns for 4 differ-
ent rules.

4.3 Number of cache misses across flows
We capture the number of misses experienced by each flow at the

controller, when run with a fixed idle timeout policy of 5 seconds
and a TCAM size of 750. We used four different traces for this
analysis, described in greater detail in Section 6 – EDU1, EDU2,
SMIA1 and SMIA2. To do this, we used the experimental setup
shown in Figure 9 and later described in Section 6. The results of
this analysis are presented in Figure 5, after indexing the flows in
increasing order of number of misses. Across all the traces, we
observe that less than 20% of the flows contribute towards over
80% of the total misses. This disparity is especially pronounced
in SMIA1 and SMIA2, with over 90% of the total misses being
the result of less than 10% of the flows. This observation leads us
to conclude that most misses are caused by only a few flows, and
having a single idle timeout across all flows is inefficient.

4.4 Inferences
Together our observations confirm that:

• a lot of flows have really low inter-arrival times while some
flows hardly repeat - a minimum idle timeout of 1 second is

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 n

o
.
o
f
m

is
s
e
s
 (

%
)

Flows (%)

EDU1

EDU2

SMIA1

SMIA2

Figure 5: Number of misses across flows: y-axis represents the cumulative
no. of misses as a % of the total no. of misses; x-axis represents
% of flows

too large for both these types of flows

• assigning a single (static or fixed) idle timeout for all flows
would be inefficient as most of the misses are caused by a
few flows

• even the per-flow idle timeout should be assigned dynami-
cally and adapt to changes in traffic patterns

5. DESIGN AND IMPLEMENTATION
In this section we describe our design and implementation of

SmartTime including our adaptive idle timeout strategies.

5.1 Design
We now present our adaptive idle timeout strategy based on the

analytical formulation presented in Section 3 and our findings in
Section 4. Using the problem formulation presented in Section 3,
we can derive some key guidelines for our strategy as follows.

• As discussed in Section 3 we should set the lowest possi-
ble timeout for flows that either have low data rates or are
known not to repeat. Prior studies [21] have reported that
most (50%) data center flows last less than 1 second. Fig-
ure 3(a) reconfirms that the 80th percentile of inter-arrival
times for the majority of flows is less than 1 second.

• In equation 5 the term N(f) ∗Pmiss(f) denotes the number
of misses for a given flow f , which is the same as the flow
repeat count for f observed at the controller. Making the
idle timeout a steeply increasing function of the repeat count
observed can reduce the contribution of this term for flows
which repeatedly incur misses.

• However, a larger timeout implies a large delay before the
controller gets notified in case activity for the flow slows
down. Hence, a careful eviction policy (effectively a forced
early timeout) is needed to continue meeting the constraint in
equation 9 as new flows become active, while ensuring that
the number of misses are not adversely impacted due to the
eviction of a high packet rate flow.

The pseudocode for our SmartTime adaptive strategy (Adaptive-
R) is given in Figure 6. We now describe its key features.

F1: Small initial idle timeout. Our adaptive schemes assign all
flows to start with a low idle timeout of 100 milliseconds (line 4
in Figure 6). This ensures that short flows and flows that never re-
peat do not sit in TCAM for long. This is critical since most of the
flows observed in our analysis were short-lived and never caused

1: function GetIdleTime
2: FlowRepeatCount + =1
3: if a flow has never been observed before then

4: IdleTimeout = MinIdleTimeout (100 ms)
5: else

6: IdleTimeout = MinIdleTimeout * 2FlowRepeatCount

7: if FlowPrevIdleTimeout == MaxIdleTimeout AND AvgHoldFactor > 3
then

8: IdleTimeout = MinIdleTimeout (100 ms)
9: if FlowPrevIdleTimeout == MaxIdleTimeout then

10: IdleTimeout = MaxIdleTimeout (10 s)
11: if TCAMUtilization > 95% then

12: Evict a flow rule randomly
13: FlowPrevIdleTimeout=IdleTimeout
14: return IdleTimeout

Figure 6: Pseudocode for SmartTime Adaptive Strategy (Adaptive-R)

any misses. This timeout was determined empirically by exper-
imenting with other smaller timeouts (1ms and 10ms). A smaller
timeout than 100ms results in higher misses while keeping the evic-
tions low. A higher timeout will results in a huge increase in evic-
tions while marginally reducing the misses. 100ms represents a
good balance between the number of misses and proactive evic-
tions. Further, this is a tunable parameter, and if one wants to lower
the number of evictions (perhaps because of a high cost of eviction,
which will govern the average cost as per Equation 4 in Section 3),
one can start with a lower initial timeout such as as 10ms. Since,
the minimum idle timeout supported by current OpenFlow proto-
cols is 1 second, we modified OpenvSwitch [7] to accommodate
idle timeout values in milliseconds.

F2: Rapid ramp up from small timeout for frequent flows. After
selecting a small value for initial idle timeout, it is important that
we “ramp-up" as quickly as possible for flows that repeat often. We
ensure that by exponentially increasing the timeout on each repeat
occurrence (line 6 in Figure 6).

F3: Cap on maximum idle timeout. Exponential increase in time-
outs need to be limited after a few occurrences so that we do not
increase the idle timeout to very high values which can result in
wasted TCAM space in case of mispredictions. As 80% of the
flows are reported to be less than 10 seconds [21], we bound the
maximum idle timeout at 10 seconds (line 10 in Figure 6).

F4: Timeout reduction for short flows that repeat often but af-

ter a long gap. Our analysis in Section 4 shows that some flows
can have widely varying inter-arrival times (refer Figures 4(c) and
4(d)) and some inter-arrival times may be large. This implies that
such flows should not have the benefit of a large idle timeout when
they repeat after a long time and when they are likely to last for a
short duration. Our adaptive schemes achieve this by reducing the
idle timeout for flows to minimum timeout (line 8 in Figure 6)when
these flows continue to have a bad average hold factor [20]2 (greater
than 3) even after they have repeated several times (i.e reached the
max idle timeout of 10 seconds). While, this keeps our heuristic
simple, it can result in the controller reacting slowly to inactive
flows. We are currently working on further fine tuning our adap-
tive policy so that it can react to inactive flows faster by taking into
account feedback on number of packets or bytes that have matched
an expired flow rule. Controller receives this information as part of
the “flow removal" event.

2Hold Factor is defined as the sum of active time and idle time,
divided by the active time: it is desirable to have the hold factor as
close to 1 as possible

Floodlight
Core Services

Platform

Policies

Static

FIFO Eviction

Random Eviction

SmartTime
Adaptive-F

SmartTime
Adaptive-R

packet_in event

No

Request Flow Rule
For Eviction

Received
Flow

Rule for
Eviction?

Yes
Evict Flow Rule

from Switch TCAM

Drop
packet_in

No

Yes

Get Idle Timeout
for Flow

Request Idle Timeout For
Flow and Store Flow Entry

Received Idle Timeout
For Flow

Install Flow rule
To Switch

Return Idle Timeout

Received Flow
Removal Event

Remove Flow Entry
Flow removal

event

SmartTime Service Interface

TCAM
Util >

Eviction
Threshold

Figure 7: SmartTime Implementation in Floodlight OpenFlow Controller

F5: Proactive eviction for flows when TCAM is about to get

full. When TCAM utilization crosses an eviction threshold (cur-
rently defined as 95%), adaptive strategies start evicting flow rules
in a random manner (line 12 in Figure 6). Ideally these rules should
be evicted by a background thread to avoid increase in flow setup
latencies. Victims for eviction can also be chosen based on bad av-
erage data rate or bad hold factor. We also experimented with using
FIFO order for rule removal as discussed in related research [23].
Our experiments confirmed that random eviction always performs
better than FIFO eviction across all the traces. This can be at-
tributed to the fact that a large majority of the misses are caused
by a few (flows (as shown in Figure 5. Hence, the probability of
evicting a less popular flow (or a flow with lower frequency) is
higher if it is chosen randomly rather than using FIFO order.

5.2 Implementation
Figure 7 shows the SmartTime architecture as implemented in

Floodlight OpenFlow Controller. SmartTime service exposes an
interface for various adaptive, static and proactive eviction polices
to be implemented. SmartTime module registers itself for 2 Open-
Flow events from the Floodlight infrastructure:
packet-in event: Switch sends this event to the controller when-
ever a new flow arrives at the switch and there is no matching flow
rule (first few bytes of the first packet are also sent to the controller).
This event may also be sent by another module (e.g. the default for-
warding module in Floodlight that needs to compute an idle timeout
for the flow rules it installs).
flow removal event: Switch sends this event to the controller when-
ever a flow rule is removed from the switch either as a result of an
idle timeout or proactive forced eviction by the controller;

In addition, the SmartTime controller module also fetches the
maximum TCAM size associated with each switch whenever a switch
connects to the controller (using the “OFPST_TABLE" OpenFlow
request).

Once a packet-in event is received by the SmartTime service, it
checks if the current TCAM utilization level is less than the eviction
threshold (currently configured to a static value of 95%, we plan to
modify it later based on arrival flow rate). If the utilization level is
less than the eviction threshold, the SmartTime service fetches the
idle timeout from the currently active timeout policy - we currently
support static, FIFO proactive eviction, Random proactive eviction
and two Adaptive policies (with FIFO and Random evictions once
TCAM utilization crosses eviction threshold). SmartTime service

S.No. Trace Duration (mins) Packets/sec Unique flows

1 EDU1 65 5072 14039

2 EDU2 19 10396 19319

3 SMIA1 60 3189 8744

4 SMIA2 60 5702 19475

Table 1: Summary of trace statistics

(a) EDU1 Trace (b) EDU2 Trace

(c) SMIA1 Trace (d) SMIA2 Trace

Figure 8: Packet trace plots: y-axis represents number of packets, x-axis
represents time in seconds

then returns the idle timeout value to the module that invoked it. If
the utilization level is more than the eviction threshold, the Smart-
Time service first instructs the various policies to evict a rule from
the switch TCAM. Various policies decide on the flow rule(s) to
be evicted based on their inbuilt eviction strategy (static policies
do not have any eviction strategy by definition). Flow rules may
be evicted in response to packet-in events (i.e. eviction is done in
the critical path of flow rule installation) by the SmartTime service
itself or by a background thread asynchronously that wakes up at
regular intervals. At a later point of time when the flow rule expires
from the switch, the SmartTime service also gets a flow removal
event. SmartTime service passes this event to the various policies
that retrieve statistics such as the total time the flow rule was active
in the switch, number of bytes and packets that matched the flow
rule during its life time, and update their internal data structures.

6. EXPERIMENTAL EVALUATION
We conducted two sets of experiments to evaluate SmartTime:

1) experiments to evaluate SmartTime cache performance in terms
of total number of misses and drops and 2) experiments to evaluate
SmartTime latency overheads.

Packet traces and replay: We used four traces in the first set of ex-
periments: EDU1, EDU2, SMIA1 and SMIA2; EDU1 and EDU2
were captured from university data centers by the authors in [22],
while SMIA1 and SMIA2 are open data sets made available by the
Swedish Defense Research Agency [2]. A plot of both these traces
is given in Figure 8 with number of packets on the y-axis and time
on x-axis, while Table 1 summarizes the length and packets/sec for
each trace.

In order to replay these packet capture traces in real-time, we
used tcpreplay [9] with arguments –timer=rdtsc and –quiet. The
timer flag ensures that tcpreplay uses the timestamp counter on the
CPU chip for introducing timing gaps between various packets as
per the captured trace. The quiet flag ensures that there are no prints
executed during the replay period. We found that these flags were
important in order to replay the captured trace at the same speed
and with the same inter-arrival gaps.

We now describe our experiments in the next two subsections.

6.1 Evaluation of SmartTime Cache Perfor-
mance

Our first set of experiments evaluates the effect of SmartTime in
reducing TCAM misses (which has a direct impact in the form of
reducing controller load and first packet latencies of new flows),
flow drops (due to TCAM being full) or forced eviction of flow
rules (in policies that involve proactive eviction of flow rules).

Testbed: Figure 9 shows the two testbeds we used for our experi-
ments. The testbed on the left uses a modified OpenvSwitch (OVS)
[7] to accommodate idle timeouts less than 1 second (which is cur-
rently the minimum idle timeout specified by the OpenFlow proto-
col). We modified OVS code to include idle timeouts in millisec-
onds. This was done to implement our adaptive strategies which en-
sure that all flows start with a low minimum timeout (100 millisec-
onds) so that the large number of flows that never repeat are evicted
from the switch as soon as possible. Since OVS does not really
have a TCAM, this allowed us to model a TCAM of a configurable
size. We used a TCAM size of 750, since it represents the smallest
TCAM size that we have come across in an enterprise-grade Top-
of-Rack switch with OpenFlow support (IBM G8264 switch [4])
and it also ensured that there was sufficient contention for TCAM
space across all the four traces. We also conduced experiments
with TCAM size of 2000, as 2000 is a representative size for most
TCAMs in current switches since Broadcom chipset used by most
switches has a similar TCAM [15]. However, we found that EDU1
and SMIA1 traces were unable to populate the TCAM completely
at this size as they see a lesser number of flows and have a relatively
lower packets/sec rate. The other two traces - EDU2 and SMIA2,
both have a larger number of flows and higher packets/sec rate, and
there was sufficient contention for TCAM space even at a TCAM
size of 2000. A large 12-core server replays the pcap trace using
tcpreplay and SmartTime runs as part of the Floodlight OpenFlow
controller on another large 12-core server. These two machines are
interconnected by a single IBM G8264 [4] switch running in non-
OpenFlow mode (since the OpenFlow functionality is provided by
the OVS).

We now describe the 3 sets of idle timeout policies that we com-
pare in our experiments.

P1: Static idle timeout policies: As the name suggests these poli-
cies use a constant idle timeout for all flows. We experiment with
5 different timeout values - 100ms, 500ms, 1000ms, 5000ms, and
10000ms. With these policies, when the TCAM becomes full, and
a packet arrives at the switch that does not match any of the existing
flows, it is sent to the controller and the controller drops that packet.
Subsequent packets belonging to that flow are also dropped.

P2: Random eviction policy with static idle timeout: These poli-
cies use a constant idle timeout and behave in identical fashion to
static idle timeout policies (P1 above) till the TCAM utilization
reaches a pre-determined threshold (we used 95% as the thresh-
old). When the TCAM utilization reaches 95% and a TCAM miss
occurs, these policies proactively evict an existing rule. The rule to
be removed is chosen at random. We also experimented with using
FIFO order for rule removal as discussed in related research [23].
As discussed in Section 5, our experiments confirmed that ran-
dom eviction always performs better than FIFO eviction across all
the traces. We experimented with 4 different timeouts - 500ms
1000ms, 5000ms and 10000ms. We did not experiment with 100ms
since our experiments with static idle timeout of 100ms showed
that with 100ms idle timeout, there were hardly any drops across
all the four traces (and hence there was no need to evict any rules
proactively).

P3: Adaptive policy with random eviction: These policies imple-

IBM G8264 Switch

(OpenFlow Mode)

eth0

eth0

Floodlight Controller

with SmartTime

IBM G8264 Switch

(non‐OpenFlow Mode)

eth0

TCPReplay

(Pcap Trace Replayer)

eth0

Floodlight Controller

with SmartTime

OpenvSwitch
veth

Server ‐IBM x3650 M3 Server ‐IBM x3650 M3

TCPReplay

(Pcap Trace Replayer)

Testbed with modified OpenvSwitch

(minimum idle Mmeout of 100 ms) for

evaluaMng SmartTime Cache Performance

Hardware OpenFlow Switch Testbed (minimum

idle Mmeout of 1 second) for evaluaMng

SmartTime Latency Overheads

Server ‐IBM x3650 M3 Server ‐IBM x3650 M3

Figure 9: Testbeds for evaluating SmartTime

ment the SmartTime adaptive timeout algorithm (as shown in Fig-
ure 6), and additionally, if the TCAM utilization crosses a predeter-
mined threshold level (95% in our current experiments), they evict
an existing rule from TCAM, using a RANDOM criteria (Adaptive-
R). We also experimented evicting using a FIFO order (Adaptive-F)
with an additional check for a bad hold factor that ensures that only
infrequent and short lived flows are removed (as shown in Figure 6).
The results for adaptive policy with FIFO eviction were either very
similar or slightly worse than adaptive policy with Random evic-
tion.

In all our experiments, cache misses (drops or evictions in case
of adaptive policy (Adaptive-R)) for each policy have been normal-
ized with respect to the total cache misses (drops) across all the
policies for that trace. We also plot the total cost of a policy as per
Equation 4 in Section 3. Here, we assume that cost of installing a
rule, is the same as cost of evicting a rule (Cevict/Cinstall = 1).
Hence, total cost of a policy can be approximated by the sum of
cache misses and drops (or evictions) of a policy divided by the
sum of cache misses and drops (or evictions) across all policies for
that trace. Total cost of a policy provides a better comparison across
policies since a policy may result in low number of misses but may
cause high drops/evictions (or vice versa).

Experiment 1 – Static Idle timeout (P1) vs Adaptive Policy (P3)

for TCAM Size=750:

Figures 10(a), 10(b) and 10(c) show the cache misses, drops
(proactive (or forced) evictions for adaptive policy) and total cost,
respectively, for all the four traces: EDU1, EDU2, SMIA1, and
SMIA2 for the static idle timeout policies (P1) and adaptive policy
(P3). Following observations can be immediately made:

• No single static policy performs the best across all the four
traces.Static-5000ms performs the best (lowest number of
misses and lowest number of drops) for EDU1 trace, Static-
500ms performs the best for EDU2 trace and Static-100ms
performs the best for SMIA1 and SMIA2 traces.

• Adaptive policy (Adaptive-R) consistently outperformed the
best performing static policy for three traces (Static-500ms
for EDU2, Static-100ms for SMIA1 and SMIA2 traces) both
in terms of misses and number of drops (evictions in case
of Adaptive policy). Note that, in case of a static policy, a
flow being dropped because of TCAM getting 100% utilized,

results in all subsequent packets of that flow getting dropped.
This can result in an inflation in number of drops for static
policies.

• Adaptive policy (Adaptive-R) outperformed the best perform-
ing static policy for EDU1 (Static-5000ms) in terms of misses
and underperformed in terms of drops (or evictions).

• In terms of total cost (Figure 10(c), Adaptive policy (Adaptive-
R) outperformed the best performing static policy for EDU2
(Static-500ms), SMIA1 (Static-100ms) and SMIA2 (Static-
100ms) by 25% to 58%. It outperformed the best performing
static policy for EDU1 (Static-5000ms) by 4%.

Experiment 2 – Random eviction with static idle timeout (P2)

vs Adaptive Policies (P3) for TCAM Size=750:

Figures 11(a), 11(b) and 11(c) show the cache misses, proac-
tive (or forced) evictions and total cost, respectively, for all the
four traces: EDU1, EDU2, SMIA1, and SMIA2 for Random evic-
tion with static idle timeout policies (P2) and adaptive policy (P3).
These experiments show the following trends:

• As was the case with static idle timeout policies, no single
random eviction policy performs the best across all the four
traces. In terms of total cost (Figure 11(b), random eviction
with 5000ms static idle timeout (Random-5000ms) performs
the best for EDU1 and EDU2 traces but Random-1000ms
performs the best for SMIA1 and SMIA2 traces.

• In this experiment also, Adaptive policy (Adaptive-R) con-
sistently outperformed the best performing random eviction
policy for all the four traces by 2% to 15% in terms of total
cost. The margin of outperformance is lower here (as com-
pared to the static idle timeout experiment), and it highlights
the benefits of proactively evicting flow rules at high TCAM
utilization.

Experiment 3 – Static Idle timeout (P1) vs Adaptive Policy (P3)

for TCAM Size=2000:

We now compare the effect of increasing the cache size from 750
to 2000. As discussed earlier, 2000 is a representative size for most
TCAMs in current switches since Broadcom chipset used by most
switches has a similar TCAM [15]. Figures 12(a), 12(b) and 12(c)
show the cache misses, drops (proactive (or forced) evictions for
adaptive policy) and total cost, respectively, for all the four traces:
EDU1, EDU2, SMIA1, and SMIA2 for the static idle timeout poli-
cies (P1) and adaptive policy (P3). Most of the observations made
earlier hold true even in this experiment:

• No single static policy performs the best across all the four
traces. In terms of total cost (Figure 10(c)) , Static-1000ms
has the lowest total cost for EDU2, and Static-10000ms has
the lowest total cost for EDU1, SMIA1 and SMIA2.

• Adaptive policy (Adaptive-R) outperformed the best perform-
ing static policy for EDU2 (Static-1000ms) by 52% and the
best performing static policy for SMIA2 (Static-10000ms)
by 16% in terms of total cost. It underperformed the best
performing static policy for EDU1 (Static-10000ms) by 24%
and the best performing static policy for SMIA1 (Static-10000
ms) by 6%. This is not entirely surprising since both EDU1
and SMIA1 do not have enough number of flows to exhaust
the available TCAM space (2000). In the absence of any
cache contention, a static policy with a high timeout will nat-
urally perform the best. Even in these two cases,where the
Adaptive-R policy underperformed the best performing static
policy, it was still the second best performing policy across

 0

 10

 20

 30

 40

 50

 60

 70

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
m

is
s
e

s
 (

%
)

Static-100ms

Static-500ms

Static-1000ms

Static-5000ms

Static-10000ms

Adaptive-R

(a) Misses

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
d

ro
p

s
/e

v
ic

ti
o

n
s
 (

%
)

Static-100ms

Static-500ms

Static-1000ms

Static-5000ms

Static-10000ms

Adaptive-R

(b) Drops/Evictions

 0

 10

 20

 30

 40

 50

 60

 70

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 t

o
ta

l
c
o

s
t

(%
)

Static-100ms

Static-500ms

Static-1000ms

Static-5000ms

Static-10000ms

Adaptive-R

(c) Total Cost

Figure 10: Static idle timeout(P1) vs Adaptive Policies (P3) for Cache Size=750: Adaptive policy (Adaptive-R) outperforms the best performing static policy
for EDU2(Static-500ms), SMIA1 and SMIA2 (Static-100ms) by up to 58% in terms of total cost. For EDU1 trace, it outperformed the best
performing static policy (Static-5000ms) by 4%.

 5

 10

 15

 20

 25

 30

 35

 40

 45

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
m

is
s
e

s
 (

%
)

Random-500ms

Random-1000ms

Random-5000ms

Random-10000ms

Adaptive-R

(a) Misses

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
e

v
ic

ti
o

n
s
 (

%
)

Random-500ms

Random-1000ms

Random-5000ms

Random-10000ms

Adaptive-R

(b) Evictions

 5

 10

 15

 20

 25

 30

 35

 40

 45

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 t

o
ta

l
c
o

s
t

(%
)

Random-500ms

Random-1000ms

Random-5000ms

Random-10000ms

Adaptive-R

(c) Total Cost

Figure 11: Random eviction with static idle timeout(P2) vs adaptive policies(P3) for Cache Size=750: Adaptive policy (Adaptive-R) outperforms the best
performing random eviction policy for all the traces by up to 15% in terms of total cost.

all policies and utilized 25% less TCAM space for EDU1 and
70% less TCAM space for SMIA1.

Experiment 4 – Random eviction with static idle timeout (P2)

vs Adaptive Policies (P3) for TCAM Size=2000:

Figures 13(a), 13(b) and 13(c) show the cache misses, proac-
tive (or forced) evictions and total cost, respectively, for all the
four traces: EDU1, EDU2, SMIA1, and SMIA2 for Random evic-
tion with static idle timeout policies (P2) and adaptive policy (P3).
These experiments show the following trends:

• In terms of total cost (Figure 13(b), random eviction with
10000ms static idle timeout (Random-10000ms) performs
the best across all random eviction policies for all four traces.

• In this experiment, Adaptive policy (Adaptive-R) outperformed
the best performing policy for EDU2 (Random-10000ms) by
19% in terms of total cost. It was the second best policy
for EDU1, SMIA1 and SMIA2 traces, lagging slightly be-
hind Random-10000ms by 24%,3% and 15% in terms of to-
tal cost, and utilizing 25%, 80% and 83% less TCAM space
or evictions (in case of SMIA2), respectively.

Cache Performance Summary: In summary, the adaptive policy
(Adaptive-R) consistently outperformed the best performing static
idle timeout (P1) and random eviction (P2) policies across major-
ity of all our experiments (in 67 experiments out of a total of 72
experiments- 4 traces, 9 static or random eviction policies, 2 cache
sizes (750 and 2000)). In some cases, the outperformance was as
high as 58% in terms of total cost. Only in cases when there was
no cache contention (For cache size 2000, EDU1 and SMIA1 traces
with static and random eviction policies, SMIA2 trace with random
eviction policy), it slightly lagged behind the best performing static
or random eviction policy. This is expected, since in the absence

of any cache contention (and 0 drops), a high static idle timeout is
likely to perform better than an adaptive policy. However, even in
such cases, the underperformance was marginal (never worse than
24%) and Adaptive-R was the second best performing policy in
terms of total cost, and utilized 25% to 80% less TCAM space.

6.2 Evaluation of SmartTime Overheads
In order to evaluate the overheads of SmartTime policies, we per-

formed three sets of experiments on the testbeds shown in Figure 9.
In the first experiment, latency measurements using the ping utility
were used to assess the overheads of SmartTime operations; in the
second experiment, we studied the effect of increase in the num-
ber of flows in the TCAM on the performance of SmartTime; in
the third experiment, we assess the overhead of SmartTime on real
applications, with EDU2 trace.

Experiment 1 – Measurement of ping latencies:

We used the ping utility to measure the latency in the network
under five different scenarios. The experiments were performed on
both the testbeds shown in Figure 9 with another server added as
the ping destination. In each scenario, 2000 ping requests were
generated at intervals of 100ms (for testbed 1, on the left of Fig-
ure 9) and 2 seconds (for testbed 2, on the right of Figure 9)3 be-
tween the same source and destination, and their round trip times
measured. In the description that follows, all chosen timeout val-
ues correspond to testbed 1; appropriate values were selected for
testbed 2 to maintain the same hit-miss pattern as required by the
scenario.

3This difference in ping intervals was required across the testbeds
because the minimum idle timeout supported by the switch in
testbed 2 was 1s; thus, generation of pings at an interval in the
order of milliseconds would prevent us from capturing any misses

 0

 10

 20

 30

 40

 50

 60

 70

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
m

is
s
e

s
 (

%
)

Static-100ms

Static-500ms

Static-1000ms

Static-5000ms

Static-10000ms

Adaptive-R

(a) Misses

 0

 20

 40

 60

 80

 100

 120

EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
d

ro
p

s
/e

v
ic

ti
o

n
s
 (

%
)

Static-100ms

Static-500ms

Static-1000ms

Static-5000ms

Static-10000ms

Adaptive-R

(b) Drops/Evictions

 0

 10

 20

 30

 40

 50

 60

 70

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 t

o
ta

l
c
o

s
t

(%
)

Static-100ms

Static-500ms

Static-1000ms

Static-5000ms

Static-10000ms

Adaptive-R

(c) Total Cost

Figure 12: Static idle timeout(P1) vs Adaptive Policies (P3) for Cache Size=2000: Adaptive-R outperforms the best performing static policy for EDU2
(Static-1000ms) and SMIA2 (Static-10000ms) by up to 52% in terms of total cost. For EDU1 and SMIA1 traces that had no cache contention (and
hence had 0 drops), Adaptive-R was the second best policy only slightly behind the best performing static policy (Static-10000ms) while utilizing
25% and 70% less TCAM space, respectively.

 0

 10

 20

 30

 40

 50

 60

 70

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
m

is
s
e

s
 (

%
)

Random-500ms

Random-1000ms

Random-5000ms

Random-10000ms

Adaptive-R

(a) Misses

 0

 20

 40

 60

 80

 100

 120

EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 n

u
m

b
e

r
o

f
e

v
ic

ti
o

n
s
 (

%
)

Random-500ms

Random-1000ms

Random-5000ms

Random-10000ms

Adaptive-R

(b) Evictions

 0

 10

 20

 30

 40

 50

 60

 70

EDU1 EDU2 SMIA1 SMIA2

N
o

rm
a

liz
e

d
 t

o
ta

l
c
o

s
t

(%
)

Random-500ms

Random-1000ms

Random-5000ms

Random-10000ms

Adaptive-R

(c) Total Cost

Figure 13: Random eviction with static idle timeout(P2) vs adaptive policies(P3) for Cache Size=2000: Adaptive policy (Adaptive-R) outperforms the best
performing random eviction policy for EDU2 (Random-10000ms) by 19% in terms of total cost. It is the second best performing policy for EDU1,
SMIA1 and SMIA2 traces, lagging slightly behind Random-10000ms in terms of total cost while utilizing 25%,80% and 83% less TCAM space
or evictions (in case of SMIA2).

S1: No SmartTime, all flows resulting in hits – In this scenario,
we ran SmartTime with a static idle timeout policy of 1s, after dis-
abling all policy-related computations (thereby emulating a con-
troller without SmartTime). Starting with an empty TCAM, the
first ping request and response naturally result in misses leading to
the installation of new flows; every subsequent packet results in a
cache hit.

S2: No SmartTime, all flows resulting in misses – We used the
same modified version of SmartTime as in the previous scenario,
but with a static idle timeout policy of 10ms. Thus, each ping re-
quest (and response) results in a miss, the inter-packet arrival times
being greater than the idle timeout for flows.

S3: SmartTime with Adaptive-R policy, all flows resulting in

hits –In this scenario, SmartTime was run with Adaptive-R policy
with a minimum idle timeout of 1s. As in scenario (S1), only the
first ping request (and corresponding response) result in the instal-
lation of new flows; all subsequent packets result in hits.

S4: SmartTime with Adaptive-R policy, all flows resulting in

misses – In this scenario, we ran SmartTime with Adaptive-R pol-
icy, with a constant idle timeout of 10ms for all flows, while keep-
ing all SmartTime computations intact. We achieved this by over-
riding the computed timeout values with a constant 10ms during
flow installations, only for the purpose of expediting the experi-
ment, without affecting the performance of SmartTime. As in sce-
nario (S2), all packets result in misses.

S5: SmartTime with Adaptive-R policy, all flows resulting in

evictions – Unlike the previous scenarios, we first populated the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

C
D

F

Latency (ms)

No ST - all hits

No ST - all misses

Adaptive-R - all hits

Adaptive-R - all misses

Adaptive-R evictions

Figure 14: CDF of ping packet latencies with OVS testbed shown on the
left hand side of Figure 9

TCAM completely with randomly generated permanent flows. The
idle timeout for the ping flows, however, was maintained constant
at 10ms as in scenario (S4). Moreover, after each ping, we addi-
tionally installed two permanent flows in the TCAM, to occupy the
space left vacant after the ping request and response flows timed
out. This ensures that the TCAM is full whenever a ping packet
reaches the switch, and an installation is always preceded by an
eviction.

Figure 14 shows the CDF of the ping latencies (in log scale) un-
der the different scenarios on the OVS testbed shown on the left
hand side of Figure 9 (testbed 1), while Figure 15 shows the results
on the hardware switch testbed on the right hand side of Figure 9
(testbed 2). The average latency of the packets (after discarding
the top and bottom 10%) are presented in Table 2 for both sets of
results. As expected, negligible difference in latency was seen be-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

C
D

F

Latency (ms)

No ST - all hits

No ST - all misses

Adaptive-R - all hits

Adaptive-R - all misses

Adaptive-R - evictions

Figure 15: CDF of ping packet latencies with hardware testbed shown on
the right hand side of Figure 9

S.No. Scenario
Avg. latency (ms)

Testbed 1 Testbed 2

1 No SmartTime – all hits 0.174 0.185

2 No SmartTime – all misses 1.712 5.399

3 Adaptive-R – all hits 0.176 0.184

4 Adaptive-R – all misses 1.749 5.987

5 Adaptive-R – evictions 1.897 186.6

Table 2: Avg. latency of ping packets

tween scenarios (S1) and (S3), where all packets result in cache
hits, and the controller does not participate. To calculate the over-
heads of SmartTime in the case of a new flow installation (with-
out eviction), we consider scenarios (S2) and (S4); the observed
difference in latency being the result of SmartTime computations
involved in the installation of two new flows – ping request and
the corresponding response. The overhead in this case is (1.749
- 1.712)/1.712 = 0.022 or 2.2% for testbed 1, while it is (5.987 -
5.399)/5.399 = 0.109 or 10.9% for testbed 2. Note that difference
in absolute values of overhead between the two testbeds is a con-
sequence of the difference in specifications of the servers on which
the controller is running. For the case in which an installation is
preceded by an eviction, we consider scenarios (S2) and (S5), the
observed overhead being (1.897 - 1.712)/1.712 = 0.108 or 10.8%
for testbed 1. The high latency observed in testbed 2, we suspect,
is due to anomalous behavior in the hardware switch and is cur-
rently under investigation. 4

It is important to note here that the difference in latency be-
tween scenarios (S4) and (S5) cannot be attributed completely to
flow eviction. As is evident from the results of Experiment 2 (de-
scribed subsequently), the cost of flow installations by SmartTime
increases with increase in the number of flows installed in the TCAM;
and while the TCAM was always empty whenever a new flow ar-
rived in scenario (S4), in scenario (S5) it remains full.

Additionally, from the results of the experiment on testbed 1,
the cost of flow installation Cinstall and the overhead of eviction
Cevict can be computed thus: Cinstall = 1.749 ms, (from the
observations of scenario (4)), and Cevict = 1.897−1.749 = 0.148
ms (from scenarios (4) and (5)). Also, Cevict/Cinstall = 0.085; this
is in stark contrast with our assumption in Section 6.1, where this
factor was generously assumed to be 1. Note that the exact value
of this factor will differ across setups; the smaller this factor, the

4We suspect that the high overhead of evictions seen in testbed 2 is
a result of inefficiencies in the eviction algorithm implemented in
the firmware, and not an artifact of SmartTime. We have confirmed
this by studying Wireshark packet captures at the controller while
observing the latencies between OpenFlow packets during our ex-
periments. Moreover, had this been a result of our SmartTime poli-
cies, similar behavior would have been observed on testbed 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000

S
m

a
rt

T
im

e
 O

v
e
rh

e
a
d
 (

m
s
)

Flows

Figure 16: Effect of increase in no. of flows in TCAM of size 1000 on
SmartTime performance

lesser the contribution of eviction overheads towards the total cost.

Experiment 2 – Effect of increase in number of flows on con-

troller performance:

In this experiment, the overheads of SmartTime were computed
from within the controller, using system time measurements. We
injected 2000 randomly generated flows into a TCAM of size 1000,
with an Adaptive-R policy having a threshold of 95%, modified to
install permanent flows (while maintaining all policy related com-
putations). The results are presented in Figure 16. We observed
a gradual increase in the time taken for flow installations (with-
out evictions) until the time that the TCAM threshold was reached.
This is to be expected as SmartTime maintains a history of observed
flows to aid its decisions. This increase, however, is small, and of
the order of 0.1ms. Any new flows beyond the TCAM threshold
involve an additional eviction operation. In steady state, the cost of
eviction followed by installation stabilizes, and remains unaffected
by further increase in the number of observed flows.

Experiment 3 – Application performance on a hardware testbed:

In order to evaluate the overhead of SmartTime policies on ap-
plication overall performance on a hardware testbed, we performed
experiments on the hardware testbed shown on the right hand side
of Figure 9. We executed the netperf [5] benchmark application
while tcpreplay continued replaying the captured traces. Trace re-
play was required in order to ensure that TCAM on the hardware
switch was either full or close to being full, and almost all netperf
executions resulted a cache miss and a possible eviction in case of
proactive eviction policies. We used netperf in the request-response
mode (TCP RR test [6]) to capture increase in flow setup laten-
cies. We executed netperf for 2 seconds duration and each run was
repeated after 15 seconds as tcpreplay continued replaying EDU2
trace. This ensured that each netperf run resulted in a cache miss
(since the maximum idle timeout used by SmartTime is 10 sec-
onds). Average latency and throughput results of these runs is given
in Figure 17. Almost all policies perform nearly equally with minor
(less than 1%) differences in latency or throughput numbers. This
confirms that SmartTime does not result in any significant over-
heads.

Experiment 4 – CPU overheads at the controller:

We collected the CPU utilization at the controller (running on
a 12 core server) as we conducted the cache performance experi-
ments of Section 6.1 on the OVS testbed shown on the left hand
side of Figure 9. We compared the CPU utilization for best per-
forming static idle timeout policy and random eviction policy for
all the four traces with the CPU utilization for Adaptive-R policy.
The overall CPU utilization at the controller was never more than
1% for any of our experiments. Average CPU utilization at the

 56

 57

 58

 59

Static-1s

R
andom

-1s

Adaptive-R

 17130

 17160

 17190

 17220

 17250

L
a
te

n
c
y
 (

µ
s
/T

ra
n
s
)

T
ra

n
s
a
c
ti
o
n
 r

a
te

 (
T

ra
n
s
/s

e
c
)

Latency (µs/Trans)

Transaction rate (Trans/sec)

Figure 17: Netperf experiments for evaluating SmartTime effect on appli-
cation performance: Almost all policies perform nearly equally
with minor (less than 1%) difference

controller was marginally higher for Adaptive-R policy while the
Max CPU utilization was lower as compared to best performing
static and random eviction policies. This could be due to the fact
that Adaptive-R policy avoids bursts of misses and evictions (which
would result in high Max CPU), while continuously computing the
best idle timeout for each TCAM miss (which results in higher av-
erage CPU). Since the overall CPU utilization was less than 1%,
we omit these results due to lack of space.

7. CONCLUSION
In this paper, we presented SmartTime: a first real implemen-

tation of an OpenFlow controller system that combines adaptive
idle timeouts for flow rules with a proactive eviction strategy based
on current TCAM utilization level and can be deployed in current
OpenFlow networks.

We formulated the problem of minimizing the total cost of a
TCAM miss in an OpenFlow network. We analyzed real data cen-
ter packet traces and designed our adaptive heuristic based on some
key observations. Based on our observation that many flows in the
network never repeat, we recommend a smaller minimum timeout
value for OpenFlow flow rules (in the range of 10-100 milliseconds
as compared to the current minimum timeout value of 1 second).

We validated SmartTime by replaying four real data center packet
traces for two representative cache sizes and compare it with mul-
tiple static idle timeout policies and random eviction policies. In
all our experiments, SmartTime adaptive policy was either the best
performing or second best performing policy across all traces and
cache sizes. In 67 out of 72 experiments, SmartTime adaptive pol-
icy outperformed the best performing static idle timeout policy or
random eviction policy by up to 58% in terms of total cost.

Currently, we are involved in enhancing SmartTime adaptive pol-
icy through several important additions. First, we are fine tuning
our adaptive policy so that it can react to inactive flows faster by
taking into account feedback on number of packets or bytes that
have matched an expired flow rule. Second, we are working on
an automated framework for automatically selecting some of the
tuning parameters (initial or the min idle timeout, max idle time-
out, rate of timeout increase) based on observed network parame-
ters. Finally, we are also working towards deploying and validating
SmartTime in production OpenFlow networks.

8. REFERENCES

[1] Data Set for IMC 2010 Data Center Measurement.
http://pages.cs.wisc.edu/~tbenson/IMC10_

Data.html.

[2] Data Set from The Swedish Defence Research Agency (FOI)
Information Warfare Lab.

http://www.foi.se/en/Our-Knowledge/

Information-Security-and-Communication/

Information-Security/Lab-resources/

CRATE/.

[3] Floodlight: A Java-based OpenFlow Controller.
http://www.projectfloodlight.org/floodlight/.

[4] IBM RackSwitch G8264 Command Reference: Pages
103-107. http://www-01.ibm.com/support/
docview.wss?uid=isg3T7000600&aid=1.

[5] NetPerf Benchmark.
http://www.netperf.org/netperf/NetperfPage.html.

[6] NetPerf TCP RR test.
http://www.netperf.org/netperf/training/

Netperf.html#0.2.2Z141Z1.SUJSTF.8R2DBD.R.

[7] Open vSwitch - An Open Virtual Switch.
http://www.openvswitch.org.

[8] OpenDaylight: A Linux Foundation Collaborative Project.
http://www.opendaylight.org.

[9] TCPReplay: Pcap replay tool.
http://tcpreplay.synfin.net/wiki/tcpreplay.

[10] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. DevoFlow: Scaling Flow
Management for High-Performance Networks. In ACM

SIGCOMM, 2011.

[11] C. Ding and Y. Zhong. Predicting whole-program locality
through reuse distance analysis. In PLDI, 2003.

[12] N. Gude et al. NOX: Towards an Operating System for
Networks. In ACM SIGCOMM CCR, July 2008.

[13] A. Iyer, V. Mann, and N. Samineni. SwitchReduce:
Reducing switch state and controller involvement in
OpenFlow networks. In IFIP Networking, 2013.

[14] K. Kannan and S. Banerjee. Flowmaster: Early eviction of
dead flow on sdn switches. In ICDCN, 2014.

[15] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong,
R. Gao, and Y. Zhang. Serverswitch: A programmable and
high performance platform for data center networks. In
NSDI, 2011.

[16] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya,
R. Poddar, and A. Iyer. Remedy: Network-aware Steady
State VM Management for Data Centers. In IFIP

Networking, 2012.

[17] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman.
VMFlow: Leveraging VM Mobility to Reduce Network
Power Costs in Data Centers. In IFIP Networking, 2011.

[18] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchies. IBM Syst. J.,
9(2):78–117, June 1970.

[19] N. McKeon et al. OpenFlow: Enabling Innovation in
Campus Networks. In ACM SIGCOMM CCR, 2008.

[20] B. Ryu, D. Cheney, and H. Braun. Internet flow
characterization: Adaptive timeout strategy and statistical
modeling. In Passive and Active Measurement Workshop

(PAM), 2001.

[21] S.Kandula, S.Sengupta, A.Greenberg, and P.Patel. The
Nature of DataCenter Traffic: Measurement and Analysis. In
IMC, 2009.

[22] T.Benson, A. Akella, and D.Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In IMC, 2010.

[23] A. Zarek, Y. Ganjali, and D. Lie. Openflow timeouts
demystified. In MSc Thesis for Department of Computer

Science, University of Toronto, 2012.

