
JURY: Validating Controller Actions in Software-Defined Networks

Kshiteej Mahajan∗

U Wisconsin–Madison
Rishabh Poddar∗

UC Berkeley
Mohan Dhawan
IBM Research

Vijay Mann
IBM Research

Abstract—Software-defined networks (SDNs) only logically
centralize the control plane. In reality, SDN controllers are
distributed entities, which may exhibit different behavior on event
triggers. We identify several classes of faults that afflict an SDN
controller cluster and demonstrate them on two enterprise SDN
controllers, ONOS and OpenDaylight. We present JURY, a system
to validate controller activities in a clustered SDN deployment,
involving topological and forwarding state, without imposing any
restrictions on the controller behavior. Our evaluation shows
that JURY requires minimal changes to the SDN controllers for
deployment, and is capable of validating controller actions in
near real time with low performance overheads.

Keywords-Software-Defined Network, Controller Cluster, High
Availability, Validation.

I. INTRODUCTION

Commercial SDN 1 controller offerings, like those from
Big Switch, Cisco, HP, and Juniper, deploy controllers as a
cluster, for purposes of high availability (HA) and scalability.
However, these controllers, like other distributed systems, are
prone to faults [36], [55]. A controller is deemed faulty if it
exhibits actions other than normal, such as response omissions,
incorrect/inconsistent responses, or timing faults, which may
adversely affect SDN operations. This paper looks at the
problem of validating controller actions involving topological
and forwarding state in near real time, where one or more
controllers in an HA cluster 2 may be faulty.

While automated tools, such as FAI [5], YaST [25] and
OSCAR [20], reduce cluster misconfiguration, faults may
still manifest due to bugs in SDN control plane, rolling
software updates, resource availability, etc. Controller nodes
may respond differently due to differences in their operating
environments, i.e., kernel version, controller software version,
available resources (CPU, memory, network bandwidth), etc.
Kernel security patches and controller software upgrades are
often applied in a sequential manner (since the OS or the
controller may require a reboot), and potentially leave a
window of time when not all replicas run the same code
(and at the same OS patch level), thereby leaving the replicas
susceptible to operational faults. Further, controllers are often
implemented in high level languages such as JAVA/PYTHON,
and it is not uncommon to experience memory bloats or leaks,
which may render a server unresponsive.

Several documented examples of operational faults in HA
clusters exist—(i) routine upgrade causes nodes to be out of

∗ Both authors contributed equally.
1We use the term SDNs to refer to OpenFlow-based SDNs.
2We use the term HA clusters to refer to both Active-Active and Active-

Passive modes [9].

sync [8], [21], (ii) nodes in sync initially quickly desynchro-
nize under load, and depending on which node is hit, display
different data [2], (iii), nodes fail to sync at the time of re-
synchronization [15], [17], and (iv) nodes fail to synchronize
due to an rsync process on a replica [22].

The inherent asynchrony and concurrency in SDN controller
clusters, along with the non-transactional nature of OpenFlow
further exacerbates the problem, resulting in situations where
inconsistent controller state may exist due to a replica crash or
connectivity failure between the nodes [49]. Faulty nodes may
(i) replicate incorrect state [11], [19], [23], [55], (ii) generate
incorrect network actions for switches under their control [6],
[13], or (iii) completely omit a response [3], [16], [55]. Recent
work [31], [55] lists numerous such faults that manifest in
popular SDN controllers, either due to subtle bugs or arbitrary
replica crashes, or a combination of them.

Faults can cause a controller to not only behave incorrectly,
but also violate protocol specification in some cases [13],
[31], [55]. Most prior work in the domain of SDN verifi-
cation [27]–[29], [38], [45], [46], [48], [50] limits itself to
verifying high-level controller behavior (and programs running
atop it) against specified network invariants. Likewise, recent
work [51], [56] on model checking SDNs validate network
actions only. However, none of them consider controller cor-
rectness in a clustered setup.

We present JURY—a system that leverages consensus
amongst nodes with equivalent network view, to validate con-
troller responses affecting both state propagation and network
actions, without limiting capabilities of the faulty controller(s).
There are two key observations that motivate validation of
controller actions using consensus in SDN HA clusters. First,
an SDN HA cluster offers output determinism for incoming
triggers. In other words, since controller replicas in a cluster
share the same distributed state (both topological and forward-
ing) to offer a logically centralized view, replicated execution
in other controller nodes produces a high-fidelity replica of the
execution in the original controller node, thereby producing
outputs same as the original. Second, all non-adversarial (i.e.,
both faulty and non-faulty) controller activities, involving
topological and forwarding state actions, update the controller-
wide caches to enable consistency of state across controller
replicas. This logging helps in validating controller actions.

Guided by the above observations, we determine the verac-
ity of controller actions by (i) intercepting all network and state
triggers to/from each controller in the cluster, (ii) replicating
them across randomly selected replicas, and (iii) comparing the
responses within an out-of-band validator to reach consensus
on every action. Given that a clustered setup is the only way

SDN controllers are deployed in production environments,
JURY improves reliability and robustness of SDN control (over
single controller setup) with minimal overheads.

Practical response validation, however, is contingent on
two factors. First, controllers may follow different consistency
models, and in presence of rapid changes in network state, all
nodes may not share the same global network view. Second,
some controller applications may have non-deterministic or
time dependent actions, which must be accounted for during
validation. We show that even in light of the above concerns,
validation using consensus in an HA cluster is feasible.

We have built a prototype of JURY for the ONOS and Open-
Daylight (ODL) controllers, and have evaluated them with a
cluster of 7 controller replicas over a physical testbed and
Mininet [14]. JURY successfully detected all faulty controller
responses for a 7 node cluster with 2 faulty controllers, with
an average detection time of ∼129ms for ONOS and ∼700ms
for ODL. Further, JURY-enhanced ONOS reported just 0.35%
false positives across three different benign traces. JURY is
also capable of validating 1K policies in just ∼1.2ms, and
imposes moderate network overhead in the worst case, i.e.,
full replication across all nodes.

This paper makes the following contributions:
(1) We identify (§ III-B) and demonstrate (§ VII-A1 and Ap-
pendix A) broad classes of faults afflicting low-level controller
correctness and performance in a clustered setup.
(2) We present JURY—a system to validate both topological
state and forwarding actions in an HA clustered controller
setup, and facilitate easy action attribution.
(3) We provide a practical design (§ IV) for JURY along with
its policy engine (§ V) that enables administrators to specify
fine-grained policies on controller state.
(4) We implement JURY (§ VI) for both ONOS and ODL
controllers, and evaluate them (§ VII) to demonstrate that
replication for detecting consistency in controller behavior is
practical, accurate and involves low overhead.

II. BACKGROUND

SDNs, unlike traditional networks, separate the data and
control functions of networking devices. The logically central-
ized SDN controller governs the flows that occur in the data
plane. The control plane communicates with the data plane
on its southbound interface using a standard protocol such as
OpenFlow [53]. When a switch receives a packet for which it
has no matching flow entry, it sends them to the controller as
a PACKET_IN message. The controller uses these messages to (i)
update its topological view of the network, and (ii) create one
or more flow entries in the switch using FLOW_MOD commands,
thereby directing the switch on how to handle similar packets
in the future. The control plane also exposes a northbound API
for administrators and other third party applications to install
OpenFlow rules in the switches.

A. Clustered controllers
Fig. 1 shows a unified workflow for a clustered SDN

controller. On receiving triggers from the network (1) or

Fig. 1: SDN controller cluster.

administrator/applications (2), the controller may initiate
updates to the distributed data store (3a and 3b), and possible
network messages (4). Controller clusters follow standard HA
architectures [9]: Active-Passive, wherein all switches connect
to a single controller and others are passive replicas, and
Active-Active wherein the network is partitioned in such a way
that switches in each partition connect to a different controller
in the cluster. In the Active-Active mode, the controllers may
operate on different network of switches, but still share the
same view of the network. Further, specific controllers can
use more advanced configurations [4].
A.1 Transparency in controller actions

Logical centralization of controllers is enabled by the use of
data distribution platforms, such as Hazelcast and Infinispan.
All nodes maintain the same network view by propagating
state changes, i.e., both topological and forwarding updates, to
controller-wide caches built atop a distributed data store. This
state synchronization enables the controllers to transparently
issue directives to both local and remote switches in the SDN.
Switches are local to a controller if it directly governs them,
else they are remote. For example, enterprise controllers, like
ONOS and ODL, can issue a FLOW_MOD to a remote switch by
simply writing to the cache that manages the flow rules. The
shared data store ensures that the remote switch’s governing
controller receives the cache update, which in turn issues the
actual FLOW_MOD.
A.2 Nature of controller actions

The southbound interface is used by all network switches to
send messages to the controller over OpenFlow. A controller
can then respond to these triggers with zero or more instruc-
tions; such controller activities are referred to as “reactive”.
The northbound interface (typically REST APIs) may be used
by third party applications or administrators to send instruc-
tions to network entities. Since this is done in an unsolicited
manner from the switches’ perspective, such instructions are
termed “proactive”. In addition, some controller modules are
truly proactive and may send instructions to the switches
without receiving any triggers on either interface. For example,
a module may send some specific instructions periodically or
at some specific time of the day. In production settings, a

controller can be both proactive and reactive, i.e., it performs
proactive flow rule installations at the start to take care of most
flows, but may still react to some unforeseen packets/flows.

For the purpose of this paper, we classify triggers from
a controller’s perspective. We refer to all triggers on the
southbound and northbound interfaces as “external” triggers.
These external triggers encompass all the reactive triggers as
well as the Web-based REST triggers to the controllers. All
other triggers that originate within the controller are referred to
as “internal”. For example, all triggers due to an administrator
logging into a controller, or the truly proactive applications
are classified as internal triggers. SDN controllers handle both
internal and external triggers transparently by writing ensuing
actions to controller-wide caches, followed by zero or more
network messages. A controller may even delegate triggers to
other controllers by writing to the distributed data store, e.g.,
issuing a FLOW_MOD for a remote switch.
A.3 Side-effects of controller actions

There are three types of side-effects possible for every
controller activity involving topological state and forwarding
actions: (i) writes to cache only (C), (ii) writes to network
only (N), and (iii) writes to both cache and network (CN).
In a clustered setup, network side-effect (N) on a local or
remote switch can be achieved only through a cache write (C).
For example, controllers read the flow rules cache to create
and subsequently issue FLOW_MOD messages to the destination
switch. Note that correctly behaving controllers always write
to the cache, so only a network side-effect without any cache
updates is indicative of a misbehaving controller.

III. CONTROLLER VALIDATION

We consider an SDN HA cluster and place no restrictions
on the behavior of individual controllers, switches, hosts or
controller applications. However, we assume that controllers
(i) share a common distributed store, (ii) are non-adversarial,
and (iii) do not willfully tamper with the network communi-
cation. Faulty controllers may still write incorrect entries to
the network and/or controller caches.

A. Problem statement

Clustered controllers offer output determinism, i.e., given
two replicas Ci and C j with the same network state ψ, and
each eliciting actions Ai and A j on a trigger τ, then

{Ci ≡ C j} ⇒ {Ai = A j}

In a clustered setup of k controllers C1...k, which elicit actions
A1...k on replicated trigger τ, we reduce the problem of deter-
mining if C is non-faulty to determining consensus amongst
replica actions A1...k on every τ, i.e.,

NONFAULTY(C) ⇐⇒ ∀τ, ψ {AC = CONSENSUS(A1, ..., Ak)}

However, certain controller applications may respond in a non-
deterministic fashion, i.e., {A1 , A2 , ... , Ak}. We discuss
extensions to our core consensus mechanism to deal with such
scenarios in § IV-C.

B. Controller fault classes for validation

Like any other distributed system, an SDN HA cluster is
susceptible to five broad classes of failures: (i) crash (or
fail-stop), (ii) response omission, (iii) timing, (iv) response
(both incorrect value and state transition), and (v) arbitrary (or
byzantine). JURY, using the replicated state machine approach,
can provide detection for all but crash failures, which would
be reported as response omissions. However, faulty controller
actions can be detected only if they are externalized as
cache/network side-effects. Based on the above observations
and those in § II-A3, all faulty controller actions (for timing,
response and arbitrary failures) can be categorized as follows:

(1) Type-I (T1): In this class of activities, the faulty controller
responds to external triggers with incorrect writes to controller-
wide caches or network, or both.
ONOS DATABASE LOCKING. Clustered ONOS controllers
occasionally reject switches’ attempts to connect due to par-
ticular timing issues between the switch connects, causing the
replicas to encounter a “failed to obtain lock” error from their
distributed graph database [55].
ONOS MASTER ELECTION. In an older version of ONOS,
link liveness between adjacent switches (governed by separate
controllers) was tracked by electing the controller with a
higher ID as the master. This election happens when a new
LLDP packet arrives at the controller. If the master dies and
later reboots with an ID lower than the other controller, both
replicas will incorrectly believe that they are not responsible
for tracking the link’s liveness, and the controller with previ-
ously higher ID will incorrectly mark the link as unusable [55].
(2) Type-II (T2): In this class of activities, an administrator
or a controller application proactively issues a write to both
the caches and the network. However, the entries written are
inconsistent with each other.
ODL FLOW_MOD DROPS. In ODL, FLOW_MOD messages issued to
switches are first read by MD-SAL (ODL’s in-memory data
store), and then sent to the OpenFlow plugin, which maintains
a queue of these tasks. Since, there is no control over the order
of these egress calls, sporadically FLOW_MOD messages may be
lost when writing them to the network [13], thereby creating
inconsistency between the FLOW_MOD cache and the network.
(3) Type-III (T3): This class of activities is similar to T2
where an administrator or application proactively issues a
faulty write to both the caches and the network. However,
unlike T2, the entries written are consistent with each other,
which makes such faults hard to detect.
ODL INCORRECT FLOW_MOD. With an older version of ODL,
the OpenFlow 1.0 switch silently accepted a FLOW_MOD whose
Match did not have proper hierarchy of fields set. The switch
installed the flow discarding incorrect fields, causing incon-
sistency between flows on the switch and the data store [23].
Thus, while FLOW_MOD messages issued are consistent with those
in the cache, switch behavior resulted in inconsistencies.

While some of these faults may be resolved as controllers
mature, others would still persist due to the asynchrony and

Scenario Nature Faulty Action Validation
T1 Reactive Either C, or N, or both 3
T2 Proactive Either C or N, or both but C , N 3
T3 Proactive Both C and N where C = N 3∗

Table 1: Classes of faulty controller actions to be validated. 3∗

indicates that it may be possible to validate using policies.

concurrency in SDN clusters. Table 1 summarizes the three
categories of faulty controller activities. Irrespective of the
nature of fault, validation of T1 actions is possible since a
chain of events starting from the trigger to the response can be
tracked. Validation of T2 actions is possible due to observable
inconsistencies between the side-effects. In the event of no
inconsistencies, i.e., class T3 actions, validation is hard as
there are no external triggers (unlike T1 actions) and even a
faulty action is deemed legitimate. However, class T3 actions
can be validated against administrator specified policies.

C. Difficulty of response validation in SDNs

Practical response validation using consensus in clustered
SDN setups is hard because of (i) different controller con-
sistency models, (ii) rapid changes in network state, and (iii)
non-deterministic or probabilistic or time dependent actions
of controller applications. Further, comparison of controller
responses against a single reference controller alone does not
suffice as the reference itself might be faulty, or can even
become unresponsive.

Prior work [32], [33], [38], [51], [56], [59] neither addresses
these concerns, nor prevents faulty controller responses, nor
offers guarantees about network responses amongst the replica
nodes in a clustered setup. While some prior work [37],
[45], [46], [48], [50] provides rich policy frameworks for fast
verification of network-wide invariants, it does not consider
shared state modification amongst clustered SDN controllers.
Thus, no simple combination of the above techniques is
sufficient to validate controller activities involving topological
state and forwarding actions.

IV. JURY

JURY leverages two key observations to enable controller
nodes in the cluster to validate the actions of other nodes.
• Since controller nodes share the same distributed state
to offer a logically centralized view, replicated execution in
other controller nodes produces a high-fidelity replica of the
execution in the original controller node, thereby producing
outputs same as the original. Consensus amongst nodes with
equivalent network view ensures that the specific controller
action was non-faulty.
• All non-adversarial controller activities (i.e., both faulty and
non-faulty), involving topological and forwarding state actions,
update the controller-wide caches to enable consistency of
state across controller replicas. This logging helps in validating
controller actions.

The consensus mechanism is inspired by traditional so-
lutions [35], [40], [43], [47], which use it for purposes
of robustness and accountability in networked systems and
runtime environments. However, JURY’s goal is to only detect

inconsistencies in controller responses arising due to low-
level correctness and/or performance faults, and not resolve
or prevent disputes, which would be prohibitively expensive
at line speeds. Thus, JURY is light-weight and offers near real
time performance. Further, it does not affect the safety and
liveness of the underlying distributed system of the controllers,
since it does not interfere with any controller operations.
WORKFLOW. Fig. 2 provides a schematic workflow for JURY,
which enhances a normal SDN HA cluster at several levels
to determine the veracity of controller responses to both
internal and external triggers. JURY comprises of three main
components—a replicator and a controller module on each
replica, and an out-of-band validator. Tasks marked in solid
grey are existing actions performed by nodes in the cluster,
while those in dotted red are new tasks introduced by JURY.

JURY supports validation using three key features.
(1) JURY intercepts (1a and/or 2 in Fig. 2), and replicates
the relevant trigger (1b and/or 3b) in the controller that
received the given trigger (called primary controller) to k
randomly chosen controllers (called secondary) within the
cluster, and generate additional responses. JURY ensures that
all triggers follow the exact same control sequence in the
secondary controllers. Since a cluster provides output deter-
minism, all nodes will generate the same response for the
same trigger, which may be writes to cache or network, or
both. Note that for some other given trigger, the primary and
the corresponding k secondary controllers could be different.
(2) JURY maps all controller responses to incoming triggers,
thereby providing precise action attribution.
(3) JURY transmits these responses (1c , 3c and 4c) to an
out-of-band validator to determine within a specified time limit
whether a controller action was valid or not.

A. Trigger interception and replication

(1) External triggers. Controllers generate responses on ex-
ternal triggers, e.g., PACKET_IN on the southbound interface,
which may lead to a T1 fault. JURY leverages a custom repli-
cator on the primary controller node to intercept and replicate
network messages (both northbound and southbound) to k
randomly chosen secondary controllers (1b). The replicator
executes outside the controller binary on the primary, and
thus a faulty controller would not affect the integrity of the
replicated trigger.

The replicator sets up TCP channels to ensure reliable
and in-order delivery to the secondary controllers. The JURY
module within the secondary controller uniquely taints all
such replicated messages. Thus, 1b is tainted to identify
the trigger and the primary controller that sent it. JURY
propagates this taint throughout the processing pipeline, using
it to differentiate between (i) triggers to, and (ii) responses
from primary/secondary controllers.
(2) Internal triggers. Unlike external triggers that are trig-
gered via the network, internal triggers may originate from
within the controller (or one of its applications) or are initiated
by the administrator. Thus, triggers for these types of proactive

Fig. 2: JURY workflow. JURY is applicable to several HA controller setups [4], including Active-Active and Active-Passive. Solid grey
arrows denote existing tasks in an HA cluster, while dotted red arrows indicate new tasks initiated by JURY for validation.

actions (classes T2 and T3) cannot be explicitly intercepted.
JURY leverages the fact that controllers write all resultant
actions to controller-wide caches, and instead intercepts all
cache updates by hooking into the controller’s cache manager
(3b). Most data distribution platforms already provide (i)
reliable replication of cache events (originating from internal
triggers) to other cluster nodes, and (ii) authentication of
cluster nodes, which JURY relies upon for action attribution.

Since, unlike external triggers, interception of cache events
happens within the controller, it is possible that a faulty
controller may incorrectly alter the entries before writing them
to the caches. JURY therefore provides administrators with
additional mechanisms (as will be explained later in § V)
to detect such faulty controller updates. In case the faulty
controller writes directly to the network, JURY intercepts
such outgoing network messages (4c) and sends them to the
validator, thereby uniquely identifying the sender node.

JURY’s consensus mechanism requires that all replicated
triggers (1b and 3b) experience the same network state
within the secondary controllers, which then elicit identical
responses. However, SDN controllers follow different con-
sistency models, i.e., either strong or eventual. In strongly
consistent controllers, all replicated triggers always experience
the same state, while in eventually consistent controllers, only
a subset of the controllers may have equivalent network view,
particularly in presence of rapid changes in network state.

B. Action attribution

Precise action attribution is required to identify controllers
that misbehave in response to triggers. However, since triggers
for T2 and T3 actions originate within the controller, JURY
uses different mechanisms to achieve action attribution for
external and internal triggers. Once a response has been
mapped to its trigger, JURY transmits the responses to a
validator (1c , 3c and 4c).

(1) External triggers. JURY leverages the taint on the re-
ceived message to accurately determine if the response elicited
at a secondary controller corresponds to an external network
trigger. It tracks the propagation of the tainted message within
the controller, and marks the response with the same taint.
Responses to a replicated network message may involve writ-
ing to controller-wide caches and/or issuing FLOW_MOD mes-
sages over the network. However, multiple such responses
arising from secondary controllers may cause network insta-
bility and unpredictable behavior. Thus, JURY records and
sends the secondary responses for validation, and drops all
FLOW_MOD messages or writes to the caches generated as part
of these responses. In other words, JURY does not induce any
cache/network side-effects due to processing of triggers by
secondary controllers. While faulty controllers may incorrectly
alter the taint identifying a controller, a majority of responses
from replicas with equivalent network view ensures that all
T1 faults are detected.
(2) Internal triggers. Action attribution as described for T1
faults cannot be applied to T2 or T3 faults as these actions are
untainted. JURY’s response validator determines the origin of
these actions from the corresponding cache events replicated
across the cluster. Specifically, JURY intercepts all cache
updates at both the primary and secondary controllers and
transmits them to the validator. However, a faulty controller
may also write to the network bypassing the cache altogether.
JURY can trivially identify the origin of the network message
in such cases since it intercepts all outgoing network traffic.

C. Response validation

The validator receives multiple responses with information
about network writes and cache updates from the primary as
well as the k secondary controllers in response to a trigger. The
validator, based on deviation from expected consensus across
the responses from the controllers, validates the action taken

CONTROLLER RESPONSE VALIDATOR(S, k)
Input: S : stream of incoming controller responses

k : number of secondary controllers

Output: Oτ : validation result for each trigger τ

Initialize: Ψid : per-controller id indexed state
Vτ : per-trigger validation store
Nτ : per-trigger response count

foreach ρ[= (id, τ, entry)] ∈ S do
Nτ++
θτ = START TIMER IF NOT STARTED(θτ)

Vτ = Vτ ∪ (Ψid , ρ)

/* update state for this controller id */
if (IS CACHE(ρ))) then Ψid = Ψid ∪ entry

if (TIMER EXPIRED(θτ) ‖ 2k + 2 == Nτ) then
if ((k + 2 < Nτ) ‖ (TAINTED ENTRY EXISTS(Vτ))) then
/* external trigger */
Oτ =POLICY CHECK(SANITY CHECK(CONSENSUS(Vτ)))

else
/* internal trigger */
Oτ =POLICY CHECK(CONSENSUS(Vτ))

if (False == Oτ) then RAISE ALARM()
end

Algorithm 1: Algorithm to validate controller responses.

by the primary controller. JURY relays to the validator (a)
1 network write event generated at the primary controller, (b)
k+1 accompanying cache updates from primary and secondary
controllers combined, and (c) k responses generated from the
replicated execution of external triggers at each secondary
controller. Therefore, the validator in total receives at most
2k + 2 responses for each external trigger and at most k + 2
responses for internal triggers. Note that the k+1 cache updates
are replicated automatically to all cache instances and require
no explicit propagation.
CONTROLLER STATE MAINTENANCE. The validator main-
tains a succinct current state for every controller in the cluster.
Specifically, it keeps a running count of the total cache updates
received per controller along with a copy of the latest update,
which sufficiently represents each controller’s current state.
Note that in-order processing of cache updates is necessary
for accurate state management per controller. Since inter-
controller state synchronization via these updates happens over
TCP, it preserves the order in which the updates occur. JURY
relays these updates to the validator in the same order.
VALIDATION. Algorithm 1 lists the steps to validate all
controller responses. Each response from a controller has
three entries–controller identifier (id), trigger identifier (τ) and
controller response body (entry). The presence of taint helps
classify the controller response as a replicated execution event
from a secondary controller and the nature of entry helps
classify the response as either a primary network write event
or a cache update. The validator maintains a list of responses
received per trigger (Vτ), along with the number of responses
received (Nτ). Nτ is used to classify the trigger as internal or
external. A value of Nτ greater than k + 2 or the presence of
a tainted response in Vτ indicates an external trigger, else the
trigger is internal. Depending on the trigger type, appropriate
action is taken on Vτ to decide the output.

For both external and internal triggers, the validator executes
the CONSENSUS mechanism on responses stored in Vτ. In event
of a network write, the validator performs a SANITY CHECK

to assert if the primary controller’s network write is consistent
with the cache updates across all the controllers. Finally,
irrespective of the trigger, the validator also performs a POL-
ICY CHECK (§ V) on the primary controller’s response to
validate it. The CONSENSUS mechanism also addresses the
following challenges:
(A) TRANSIENT STATE ASYNCHRONY. Whenever a response
is received from a particular controller, a snapshot of the
controller’s current state is stored along with the response
in Vτ. This snapshot serves as an indication of the execution
environment at that controller, and makes JURY’s CONSENSUS

mechanism for external triggers state-aware. The primary con-
troller’s action is validated against those secondary controllers
that were in the same snapshot state as the primary. This averts
any false positives owing to transient inconsistency in state if
the controllers are eventually consistent.
(B) NON-DETERMINISM. In some instances, the controller’s
application logic might result in non-deterministic actions. The
CONSENSUS mechanism infers the same if each controller’s
response on the given trigger is distinct from others, and labels
the action for this trigger as non-faulty. In other scenarios
where not all non-deterministic outputs are distinct, the CON-
SENSUS mechanism employs majority amongst controllers with
equivalent state. While the latter may result in false positives, it
is not possible to address all forms of non-determinism without
prior knowledge of the application logic.
(C) SLOW REPLICAS. JURY also has a per-trigger timer θτ
that starts when the first response is received. θτ’s timeout
serves as a deadline for validating the responses. This is useful
to rule out responses generated by slow replicas from the
consensus, as they are more prone to be faulty. However, the
replicas in an HA cluster in a LAN are unlikely to suffer
from high latency. If no response is received from the primary
controller before the timeout, JURY flags a timeout fault for the
controller. With a stricter timeout, this mechanism may lead to
a high number of false alarms. JURY can mitigate this concern
using an adaptive timeout based on the most recent latency
trends of the controller responses. Currently, JURY requires
administrators to set the validation timeout.

V. JURY’S POLICY FRAMEWORK

JURY provides a light-weight policy framework that en-
ables administrators to centralize enforcement of fine-grained
checks on controller actions. These checks must be specified
in the constraint language listed in Table 2. Unlike Mer-
lin [57], which provides a framework to manage all SDN
resources, JURY’s policy framework is specific to specify-
ing topological and forwarding states only. Each policy has
four components—controller, trigger, cache and destination.
controller lists the controller id(s) whose actions must be
validated. Trigger directs the validator to check the policy
on internal, external or all triggers. Cache specifies the data
store for which the entries must be validated upon a specified
operation, such as create, update or delete. Lastly, destination
specifies whether the side-effect is local or remote, or the entire
network. Fig. 3 shows an example policy that raises an alarm

Feature Description
Controller CONTROLLERID | *
Trigger INTERNAL | EXTERNAL | *
Cache ARPDB | HOSTDB | EDGEDB | FLOWSDB | etc.
Destination LOCAL | REMOTE | *

Table 2: JURY’s policy language. This language can be used to
express constraints on controller actions.

<Policy allow="No">
<Controller id="*"/>
<Action type="Internal"/>
<Cache ="EdgesDB" entry="*,*" operation="*"/>
<Destination value="*"/>

</Policy>

Fig. 3: Example policy. This policy raises an alarm if any controller
proactively modifies the EdgesDB cache.

if any controller proactively updates the EdgesDB cache to
modify any part of the network topology.

The validator evaluates the policies after reaching consensus
amongst secondary replicas with equivalent network state. It
computes values of the policy directives for exactly one of
the matching responses, and checks for membership in the set
of all policies, i.e., an external trigger that generates 2k + 2
responses requires just one response to be checked per policy,
which significantly reduces the validation effort. The validator
flags a response if it does not match the consensus or violates
administrator-specified policies. In event of an alarm, JURY
extracts information about the offending controller, trigger and
the associated response, and presents it to the administrator
for further action. JURY’s precise action attribution helps the
administrator to diagnose problems quickly.

VI. IMPLEMENTATION

We have built a prototype of JURY for the ONOS and
OpenDaylight (ODL) controllers based on the design de-
scribed in § IV and § V. Of the several open-source SDN
controllers available, only these had mature support for clus-
tering. While JURY is applicable to several different con-
troller configurations [4], including the standard HA Active-
Active and Active-Passive modes, we experimented with
ANY_CONTROLLER_ONE_MASTER [4] setup for ONOS, and
SINGLE_CONTROLLER [4] setup for ODL. JURY’s controller
modifications for ONOS and ODL required ∼250 and ∼550
lines, respectively, while the validator was written in ∼450
lines. We now list a few salient features of our implementation.

A. Trigger replication

We achieve trigger replication using programmable soft
switches (or OVSes). To optimize the implementation, we
configured replication rules at the OVS as per the controller’s
clustering mechanism. For ONOS, we configured the OVS as a
transparent proxy to forward all packets normally, and ensure
that the secondary controllers receive a replica of the for-
warded packet. For ODL, we configured the OVS to connect to
the secondary controllers in OpenFlow mode, while normally
forwarding packets to the primary controller. We subsequently
installed rules on the OVS to forward all incoming pack-
ets to the secondary controllers. However, this configuration
causes the OVS to forward packets as PACKET_IN messages
to the secondary controllers. If the trigger to the primary
controller was already a PACKET_IN, the OVS encapsulates it and

the secondary controllers now receive a doubly encapsulated
PACKET_IN. We therefore decapsulated such messages at the
secondary controllers before processing them further.

B. Correct response elicitation

In ONOS, replicated PACKET_IN messages received at the
secondary controllers are processed normally eliciting desired
responses. However, all outgoing network/cache responses at
the secondary controllers are captured and sent to the validator
before being dropped, thereby causing no side-effects. We
required ∼200 LOC to ensure correct response elicitation
in ONOS. In ODL, we stripped the doubly encapsulated
PACKET_IN messages at the secondary controllers and attached
metadata to the message according to the context at the
primary controller. Thus, each secondary controller exhibits
the same responses as the primary controller. We modified
∼400 lines in ODL to ensure correct response elicitation.

C. Action attribution

JURY extracts the origin of cache updates from events
generated by the data stores (Hazelcast and GossipStores in
ONOS, and Infinispan in ODL), and sends them to the valida-
tor. For external triggers, JURY’s controller module uniquely
taints incoming PACKET_IN or REST queries received from the
replicator module. ONOS reactively installs source-destination
based flow rules, and the forwarding module preserves the
PACKET_IN context. Thus, JURY required ∼50 lines of change
to taint the outgoing FLOW_MOD messages. In contrast, ODL
proactively installs destination-based flow rules as soon as it
receives PACKET_IN messages for ARPs indicating host discov-
ery, i.e., even before the first traffic packet is sent as a PACKET_IN

message. Thus, instead of making wide ranging modifications
in ODL to support taint propagation, we implemented our
own forwarding module, which reacts to PACKET_IN messages
of the actual traffic to install source-destination based flow
rules. We modified just ∼150 lines in ODL to implement action
attribution and our own forwarding module.

VII. EVALUATION

In § VII-A, we evaluate JURY’s accuracy by measuring
fault detection time, false alarms generated under benign
conditions, and also compare its performance with related
work. In § VII-B, we measure JURY’s effect on network
latencies, cluster throughput, and policy validation.
EXPERIMENTAL SETUP. Our physical testbed consists of 7
servers (running controllers) connected to 14 switches (IBM
RackSwitch G8264) arranged in a three-tiered design with 8
edge, 4 aggregate, and 2 core switches. All of our servers are
IBM x3650 M3 machines having 2 Intel Xeon x5675 CPUs
with 6 cores each (12 cores in total) at 3.07 GHz, and 128 GB
of RAM, running 64 bit Ubuntu v12.04. We installed an ONOS
cluster (v1.0.0) and an ODL cluster (Hydrogen v1.0) with
7 replica controllers. Note that clustering support in recent
versions of ODL (Helium and Lithium) is still not stable.

All experiments used controllers provisioned with 12 cores
and 64 GB memory, and each running atop a separate server.

Host-to-validator communication and inter-controller traffic
was isolated to avoid any performance penalties due to repli-
cation. The controller JVM was provisioned with a maximum
memory of 2GB starting with an initial pool of 1GB. We also
used a network of 24 Mininet switches and hosts, arranged in a
linear topology, to drive traffic to our controllers. The Mininet
network connects to the controllers via OVSes running on the
servers. The validator was run on a separate host connected
to the servers via an out-of-band network.
NOTATION. In the following sections, n refers to the cluster
size, k is the replication factor (k=2 means traffic is sent to a
primary controller and to 2 other secondary controllers), and
m is the number of faulty controllers.

A. Accuracy
JURY uses timeouts to impose a threshold on all validation

decisions. We first empirically determined validation timeout
for our ONOS and ODL controller clusters. We used a linear
topology of 24 Mininet switches and 24 hosts to drive traffic
to the cluster of 7 controllers at different PACKET_IN rates for
a duration of 60s. We initiated random host joins, link tear
downs and flows between hosts, and determined the time taken
to reach consensus on controller actions with k=2, 4 and 6.

Fig. 4a plots the results for ONOS. We observe that with
increasing k at a peak PACKET_IN rate of ∼5.5K, the time
taken to reach consensus increases. This is because JURY
waits for responses to arrive from all replicas before checking
for controllers with equivalent network view and determine
the consensus. In effect, as k increases, more responses are
required to achieve a majority. If k is constant, an increase in
m also increases the detection time, as more time is required to
attain majority responses. Based on this empirical evidence, we
select the validation timeout as the 95th%ile for each k. Thus,
for an ONOS cluster with n=7, k=6 and m=0, the validation
timeout is ∼97ms. However, in presence of faulty controllers,
i.e., n = 7, k = 6 and m = 2, the validation timeout increases
to ∼129ms. Fig. 4b shows validation times for ONOS with
varying PACKET_IN rates for k = 6 and m = 0. We observe that
with increase in PACKET_IN rate, validation time also increases.

Fig. 4c plots the results for an ODL cluster with similar
configurations. We observed the validation timeouts to be
∼500ms for k = 6, m = 0 and ∼700ms for k = 6, m = 2, at
a PACKET_IN rate of ∼500. Note that validation timeouts for
ONOS were significantly lower than ODL. This discrepancy
in validation timeouts exists because ONOS is much more
responsive than ODL even when the controller’s FLOW_MOD

generation pipeline saturates.
In all these experiments, we observed no inconsistencies in

replica states. Thus, validation timeout was based on time to
reach consensus amongst k+1 responses.
A.1 Controller faults and their detection

We briefly discuss how JURY detects the real faults de-
scribed in § III-B. We refer interested readers to Appendix for
additional fault examples.
(1) ONOS database locking: A switch is deemed connected
after its FEATURES_REPLY is accepted at the controller, following

which the controller writes the switch entry into the shared
cache. Unlike the primary, secondary controllers on receipt of
the FEATURES_REPLY do not lock the cache for writing (since
JURY prevents any side-effects of replicated execution). Thus,
the validator receives updates from the secondary controllers,
but the response from the primary controller times out due to
database locking. The lack of taint on responses at the validator
helps detect the offending primary controller.
(2) ONOS master election: Controllers issue periodic LLDP
messages to switches under them for topology discovery.
However, when the secondary controllers receive a replicated
LLDP PACKET_IN after the original master reboots (with a lower
ID), they will not participate in liveness tracking since they do
not govern the concerned switch, and do not write to the cache.
Thus, only updates from the two controllers governing the
switches corresponding to the link are received. JURY detects
a fault, since these updates differ due to the liveness algorithm.
(3) ODL FLOW_MOD drops: JURY intercepts all writes to the
distributed cache received at secondary controllers and relays
them to the validator. Note that FLOW_MOD messages are also
written to the network. Thus, cache entries are checked against
lack of network write, which identifies the offending controller.
(4) ODL incorrect FLOW_MOD: JURY is a controller solution,
and thus, cannot detect a mismatch in the flow rules installed
on the switch and the cache. However, to prevent a system
from reaching such an undesirable state, we use a policy that
specifies the correct hierarchy of match fields in the cache
entry. This specification of the entry fields helps the JURY’s
validator to detect any cache entry without the specified
hierarchy of fields, thereby preventing any mismatch in the
hardware and software flow rule entries.

We now describe three synthetic faults and how JURY
detects them.

(1) Link failure: Consider a scenario where an LLDP
PACKET_IN triggers an update for a new link in the network
topology. However, a faulty controller incorrectly updates the
LinksDB cache to disable a critical link in the network.
This fault is of type T1, where an external trigger evokes a
response from the controller. JURY detects the fault based on
the discrepancies in network and cache side-effects observed
amongst cluster nodes.
(2) Undesirable FLOW_MOD: An administrator issues a FLOW_MOD

to a switch in the network, and correct flow rules are written to
the cache. However, a faulty controller incorrectly modifies the
flow rules and instead issues a FLOW_MOD that drops all packets
arriving at the destination switch. This fault is of type T2,
and works for both local and remote switches. JURY detects
the fault by sanity checking the network write against cache
updates at other cluster nodes.
(3) Faulty proactive action: An administrator or controller
application incorrectly updates the LinksDB cache, which
brings down a critical network link. This fault is of class
T3, where an internal trigger results in a controller writing
same entries to the cache and network, and thus cannot be

detected by the cluster itself. JURY validates such actions
using administrator-specified policies. For example, a policy
prohibiting controller updates to topological state in absence
of external triggers would safeguard against such actions.

DETECTION. We use synthetic and adapted scenarios (from
the real faults) described above, and measure the detection
accuracy with ONOS and ODL controller clusters with 24
Mininet hosts. We wrote a driver program to inject combina-
tion of the faults in different parts of the network, and used
JURY to validate controller actions in the worst case for cluster
size n = 7, i.e., full replication (k = 6) and two faulty replicas
(m = 2). We repeated the experiment 10 times and in each case
the JURY-enhanced controller successfully detected the fault
within ∼129ms for ONOS and ∼700ms for ODL, well within
the validation timeout for the corresponding configuration.
COMPARISON WITH RELATED WORK. JURY’s fault detec-
tion time for both ONOS and ODL is sub-second even in the
worst case (k =6, m=2). Fleet [52] uses heavy cryptographic
mechanisms to both validate and resolve disputes, but has
detection times of several seconds. STS [55] and NICE [31]
take different approaches to debug OpenFlow networks, but
are offline systems. Recent work [37], [45], [46], [48], [50]
validates controller correctness against network invariants in
order of milliseconds. However, unlike JURY, it does not
consider faults (§ III-B) that involve shared state modification
in an SDN cluster.
A.2 False alarms with benign traffic

We sanity check JURY’s validation by measuring the false
alarms generated for an ONOS cluster in presence of benign
traffic without any policies enforced. We used a set of pub-
licly available traces representing traffic within an enterprise
(LBNL) [12], a university (UNIV) [10] and a cyber-defense
exercise (SMIA) [7], and replayed them on our Mininet setup
connected to the ONOS controller. Fig. 4d plots the detection
times for these three categories of traces. We consider a worst
case scenario with two faulty replicas to compute the false
positives. Based on the validation timeout for k =6 and m=2
(i.e., 95th%ile from Fig. 4a), JURY reports a false positive rate
of just 0.35% across all three traces.

B. Performance

JURY’s overheads would be worst in a reactive controller
setup, since it would replicate incoming triggers to other
secondary controllers, thereby increasing both compute and
network overheads for the cluster. With proactive network
management in data centers, as advocated by B4 [42] and
NVP [49], JURY would perform significantly better with lower
number of false positives.

We perform experiments with both ONOS and ODL 3.
However, in the interest of space, we report results with
ONOS only, and contrast with ODL wherever required. Unless

3ODL is proactive and sets up flows in advance so that the controller does
not get any PACKET_IN events. Thus, for experiments, we modified ODL to
make it reactive, as described in § VI-C.

specified, references to ONOS and ODL stand for their JURY-
enhanced versions.
B.1 Cluster throughput

Overall cluster throughput is affected by how quickly a
controller can react to incoming PACKET_IN messages, generate
flow entries and dispatch FLOW_MOD packets to the switches
for flow setup, under various cluster sizes. We observe the
cluster’s FLOW_MOD throughput when all nodes experience the
same PACKET_IN rate.
PRELIMINARY STUDY WITH CBENCH. We ran Cbench [1]
in throughput mode against each controller in a 7 node ONOS
cluster, and observed that it quickly throttles each controller,
causing the cumulative FLOW_MOD throughput to plummet to
zero. Fig. 4e plots the results. The blue line shows the bursty
nature of Cbench’s PACKET_IN traffic at one of the cluster
nodes. The red line indicates the FLOW_MOD throughput, which
lags behind the PACKET_IN rate and quickly falls to zero.
Analyzing the packet traces, we observed several TCP packets
with notifications like “transmission window full” on the
switch’s end and “zero window” on the controller’s end. Both
these messages indicate an overwhelmed controller that delays
processing of the incoming PACKET_IN stream, subsequently
leading to complete loss of the outgoing FLOW_MOD messages.
For these reasons, we decided not to use Cbench for measuring
cluster throughput.
IMPACT OF CLUSTERING ON THROUGHPUT. Due to short-
comings of Cbench, we use tcpreplay [24] to initiate new TCP
connections for 10s from several Mininet hosts simultaneously.
Each TCP packet results in a TCAM miss, which subsequently
generates a PACKET_IN and elicits a FLOW_MOD. Fig. 4f plots the
FLOW_MOD throughput for vanilla ONOS with varying PACKET_IN

rates under different cluster sizes, i.e., n = 1, 3, 5, 7. We
observe that the FLOW_MOD throughput has direct correlation with
the PACKET_IN rates, and saturates at ∼5K 4 when the PACKET_IN

rate is ∼7.5K. Further, clustering in vanilla ONOS does not
affect the FLOW_MOD throughput significantly, and the overhead
is <8% with n = 7 at the saturation point. We attribute this
consistency to ONOS’s use of Hazelcast, which uses multicast
to deliver messages to the cluster nodes.

In contrast, vanilla ODL’s performance (Fig. 4g) is sig-
nificantly hampered by any amount of clustering. In cluster
mode but with a single node (n = 1), ODL saturates at a
peak FLOW_MOD rate of ∼800, and at n = 7, it drops down
to ∼140. Thus, ODL’s cluster mode performance is limited
by Infinispan. This huge discrepancy in the peak FLOW_MOD

throughput for ONOS and ODL can be attributed to their
consistency models—ONOS is eventually consistent, while
ODL is strongly consistent.
JURY’S IMPACT ON THROUGHPUT. We measure JURY’s

4The FLOW_MOD throughput for ONOS is less than that observed by prior
work [18], [30], which reports microbenchmark results for batch installation of
flow rules when directly invoking APIs to the flow subsystem. In contrast, we
measure the performance of the entire packet processing pipeline, including
any thread contention and locking effects. Further, unlike JURY, prior work
had flow rule backup turned off, since ONOS utilizes Hazelcast for backing
up flow rules, which can cause high variation in flow rule burst install rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Detection Time (ms)

k = 2, m = 0
k = 4, m = 0
k = 6, m = 0
k = 6, m = 2

(a) ONOS detection times for controlled traffic with
k secondary and m faulty controllers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Detection Time (ms)

500 PacketIns/sec
3000 PacketIns/sec
5500 PacketIns/sec

(b) ONOS detection times with k = 6 secondary
controllers under varying PACKET_IN rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Detection Time (ms)

k = 2, m = 0
k = 4, m = 0
k = 6, m = 0
k = 6, m = 2

(c) ODL detection times for controlled traffic with k
secondary and m faulty controllers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Detection Time (ms)

LBNL
UNIV
SMIA

(d) ONOS detection time for benign traffic with k = 6
and m = 2.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(k

ilo
 f

lo
w

s
/s

)

Time (s)

FlowMod

PacketIn

(e) Cbench PACKET_IN bursts overwhelm ONOS.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

F
lo

w
M

o
d
 r

a
te

 (
m

e
s
s
a
g
e
s
/s

e
c
)

PacketIn rate (messages/sec)

n = 1
n = 3
n = 5
n = 7

(f) FLOW_MOD v/s PACKET_IN rate for ONOS
without JURY with different cluster size.

 100

 200

 400

 800

 200 400 600 800 1000

F
lo

w
M

o
d
 r

a
te

 (
m

e
s
s
a
g
e
s
/s

e
c
)

PacketIn rate (messages/sec)

n = 1
n = 3
n = 5
n = 7

(g) FLOW_MOD v/s PACKET_IN rate for ODL with-
out JURY with different cluster size.

 0

 1000

 2000

 3000

 4000

 5000

 0 2000 4000 6000 8000 10000

F
lo

w
M

o
d
 r

a
te

 (
m

e
s
s
a
g
e
s
/s

e
c
)

PacketIn rate (messages/sec)

Without Jury, n = 7
Jury, n = 7, k = 2
Jury, n = 7, k = 4
Jury, n = 7, k = 6

(h) FLOW_MOD v/s PACKET_IN for ONOS w/ JURY
with varying secondary controllers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Decapsulation Time (µs)

100 messages/sec
200 messages/sec
300 messages/sec
400 messages/sec
500 messages/sec

(i) ODL’s decapsulation overhead for n = 7, k = 6 at
varying PACKET_IN rates.

Fig. 4: Accuracy and performance of JURY-enhanced ONOS and ODL.

impact on the cluster throughput by observing the FLOW_MOD rate
achieved with n = 7, under varying PACKET_IN throughput and
replication factors of k = 2, 4 and 6. Fig. 4h shows the results
of our experiment. Even in the worst case with full replication,
i.e., n = 7, k = 6, we observe that the FLOW_MOD throughput
experiences a drop of <11% over the base case of n = 7.
This drop in FLOW_MOD throughput results from the increased
computation in the primary controller due to Hazelcast cache
updates initiated by secondary controllers. Thus, JURY is not
the bottleneck in eliciting FLOW_MOD messages under different
cluster settings. ODL also reported similar overheads across
all cluster configurations.

Additionally, we measure the PACKET_OUT throughputs for
vanilla ONOS and observe that it is significantly higher than
the FLOW_MOD rate, and remains unaffected by any amount of
clustering. We also observe that the PACKET_OUT throughput in
ONOS saturates at ∼220K with Cbench, while the FLOW_MOD

throughput peaks at just ∼5K. Thus, the controller’s FLOW_MOD

pipeline is the real bottleneck in achieving higher FLOW_MOD

rates. We observed similar discrepancies in PACKET_OUT and
FLOW_MOD throughput trends for ODL as well.

B.2 Impact of JURY’s pipeline

(1) Traffic replication. JURY uses OVS rules to replicate
packets to secondary controllers at line speeds. Thus, JURY
incurs no performance overheads due to OVS replication.
However, JURY does incur network overheads due to repli-
cated PACKET_IN messages, traffic to the validator and inter-
controller communication.

We observe that for a 7 node ONOS cluster with full
replication (k = 6), i.e., switches connect to all controller
instances, at PACKET_IN rate of 5.5K, the inter-controller com-
munication (via Hazelcast) extensively dominates the network
traffic, reaching 142 Mbps (96.3%). In contrast, with JURY
enabled and k = 2, 4, 6, traffic due to replicated PACKET_IN

messages and the validator (at a PACKET_IN rate of 5.5K)
stands at just ∼14.2 Mbps (8.8%), ∼25.2 Mbps (14.6%) and
∼36.1 Mbps (19.6%), respectively. The overhead is less at

lower PACKET_IN rates. Note that JURY replicated PACKET_IN

messages induce no side-effects, and thus do not contribute
to any inter-controller traffic.

We observe that for k = 6 and a PACKET_IN rate of 5.5K,
the secondary controllers send ∼4 Mbps worth of Hazelcast
messages each to request/notify the primary controller about
mastership status of the switches. To ensure high availability
(HA) of controllers, it is essential that switches be connected
to all or some of the other controllers. Thus, in an actual HA
deployment, inter-controller traffic will significantly dominate
JURY’s network overheads due to replication and validation.

ODL behaves similarly. At PACKET_IN rates of 500 with n=7,
k = 6, inter-controller traffic from Infinispan was 37 Mbps,
while JURY overheads were just 12 Mbps.
(2) Action attribution. ODL must decapsulate secondary
PACKET_IN messages received from the OVS (recall § VI). We
measured these overheads for different replication factors k,
and observed that across all PACKET_IN rates, 80% packets have
a decapsulation overhead of <150µs (Fig. 4i). We also com-
pared the absolute time for vanilla ODL’s forwarding module
and our custom forwarding module to elicit a FLOW_MOD from
the instant a relevant PACKET_IN was received. We observed that
JURY incurs <1ms overhead at the 95% mark.
(3) Policy validation. We study the impact of policies on
validation time by matching FLOW_MOD responses against a set
of simulated policies and those consensuses already approved
by the validator. We observed that as the policies increase from
100 to 1K, the validation time increases linearly from 200µs
to 1.2ms. Even with 10K policies, JURY takes just 11.2ms for
response validation.

VIII. LIMITATIONS AND FUTURE WORK

(1) JURY relies on validation timeouts for raising alarms
about suspected controller actions. A lower timeout can raise
numerous false alarms, while a higher value may result in
increased detection times, which may be acceptable if real
time detection is a lower priority than false positives. Adaptive
timeouts can significantly reduce the number of false alarms in
networks with high churn. We leave determination of adaptive
timeouts for future work.
(2) JURY cannot effectively address all forms of non-
determinism in the controller/application logic. The problem
can be partially alleviated if it were possible to identify actions
from non-deterministic applications.
(3) JURY does not provide mechanisms to validate the effec-
tiveness of policies. It is possible that some type T3 faults
may manifest if policies are not comprehensive.

IX. RELATED WORK

VERIFICATION. Fleet [52], unlike JURY, addresses the prob-
lem of malicious administrators in SDN clusters. Fleet omits
the challenges posed by (a) proactive actions issued by con-
trollers, and (b) cache corruption due to faults, which JURY
addresses. Fleet also assumes an administrator can affect only
the controller’s configuration, and cannot direct a controller

to send messages to the switch. Moreover, Fleets requires
substantial modifications to ensure correct routing. In contrast,
JURY places no restrictions on administrator/controller behav-
ior, and is compatible with existing SDN setups.

VeriCon [29] symbolically verifies if a controller program is
correct on all topologies and network events. Machine verified
controllers [38] develops a formal language and its runtime
that provides guarantees on controller behavior. Anteater [50],
Header Space Analysis (HSA) [45], NetPlumber [46], Ver-
iFlow [48], and Sphinx [37] can verify network constraints
in real time. However, unlike JURY, they do not validate
constraints or anomalies on controller actions in SDN clusters.

NICE [31] uses model checking and symbolic execution of
OpenFlow applications to determine invalid system states in an
SDN. Unlike JURY, NICE is offline and assumes a singleton
controller running a simplified OpenFlow model. Other recent
work [51], [56] checks whether an SDN satisfies a given safety
property, but limits itself to validating network actions only in
singleton setups. In contrast, JURY supports validation of both
shared state and network actions in SDN HA clusters.
TROUBLESHOOTING. OFRewind [58] allows record and re-
play of control plane traffic. NetSight [41] enables retroactive
examination of paths taken by OpenFlow data plane packets.
STS [55] automatically identifies a minimal sequence of inputs
responsible for triggering a given bug. In contrast, JURY
detects inconsistent controller actions in HA clusters.
FAULT TOLERANCE. Using state machine replication [32],
[33], [59] for tolerating Byzantine faults is expensive and
requires high redundancy. While JURY leverages redundancy
for replicated execution, it is light-weight since it only de-
tects inconsistencies and does not resolve them. Like prior
work [35], [40], [43], [47], JURY uses consensus for robustness
and accountability. Akella et al. propose to re-architect SDNs
for high availability in the presence of network failures [26].
FatTire [54] presents a new language for writing fault-tolerant
network programs. Ravana [44] addresses the issue of crash
failures and recovery in SDN controllers, while LegoSDN [34]
focuses on application-level fault-tolerance caused by software
bugs. However, unlike Ravana, LegoSDN does not consider
complete controller crash failures. JURY, meanwhile, focuses
on response, timing and arbitrary failures in SDN clusters.
ACCOUNTABILITY. PeerReview [40] detects when a node
deviates from the expected algorithm. However, unlike JURY,
it cannot detect problems due to interactions between multiple
nodes, and does not provide diagnostics for what went wrong.
Accountable virtual machines (AVMs) [39] ensure correct exe-
cution of remote processes, and rely on the server to record all
incoming/outgoing messages. JURY also records state/network
events, and sends them to an out-of-band validator.

X. CONCLUSION

We describe JURY, a system that uses consensus amongst
cluster nodes with equivalent network view to validate con-
troller activities involving topological and forwarding state
in near real time. We have built a prototype of JURY for
ONOS and ODL controllers, and our evaluation shows that

JURY is practical, accurate and imposes minimal overheads.
We believe that JURY-enhanced clustered controllers provide
a more robust mechanism for SDN control as opposed to
singleton deployments.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback.

REFERENCES

[1] “Cbench,” https://goo.gl/Pb0VTc.
[2] “Cluster members out of sync,” https://goo.gl/Sw7GM6.
[3] “Clustering: Failed to deploy flows,” https://goo.gl/dM1W4z.
[4] “Connection Mgmt.” https://goo.gl/hviSnN.
[5] “FAI - Fully Automatic Installation,” http://fai-project.org/.
[6] “FlowRules stay in PENDING-ADD state,” https://goo.gl/VkHTnd.
[7] “FOI Data Set.” http://goo.gl/IA8cLX.
[8] “Hadoop nodes out of sync,” https://goo.gl/plKs1Y.
[9] “High Availability Node Configurations,” https://goo.gl/jaAmuW.

[10] “IMC 2010 data set,” http://goo.gl/LA5iiG.
[11] “Journal recovery error on restart,” https://goo.gl/w6TFjj.
[12] “LBNL/ICSI Enterprise Tracing Project,” http://goo.gl/1MKUTO.
[13] “FLOW_MOD lost from MD-SAL to switch,” https://goo.gl/vsDAiT.
[14] “Mininet,” http://mininet.org/.
[15] “Nodes out of sync at time of re-syncing,” https://goo.gl/UF2X1g.
[16] “ODL Helium Clustering: Flow Delete fails,” https://goo.gl/erkxxd.
[17] “ODL Lithium: Node does not rejoin,” https://goo.gl/jXun6N.
[18] “ONOS Flow Subsystem Burst Throughput,” https://goo.gl/Jw7S3l.
[19] “ONOS Link Detection Inconsistent.” https://goo.gl/MU6Q5q.
[20] “OSCAR,” https://goo.gl/WrGrr2.
[21] “Recovering replicas stuck in init. state,” https://goo.gl/MJxgZD.
[22] “Repair out of sync cluster nodes connection,” https://goo.gl/plsI0t.
[23] “Specific flow validation in OpenFlow plugin,” https://goo.gl/RfnX9d.
[24] “Tcpreplay,” http://tcpreplay.synfin.net/.
[25] “YaST - Yet another Setup Tool,” http://en.opensuse.org/Portal:YaST.
[26] A. Akella et al., “A Highly Available Software Defined Fabric,” in

HotNets’14.
[27] E. Al-Shaer et al., “FlowChecker: Configuration Analysis and

Verification of Federated Openflow Infrastructures,” in SafeConfig’10.
[28] ——, “Network Configuration in A Box: Towards End to End

Verification of Network Reachability & Security,” in ICNP’09.
[29] T. Ball et al., “VeriCon: Towards Verifying Controller Programs in

Software-defined Networks,” in PLDI’14.
[30] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,” in

HotSDN’14.
[31] M. Canini et al., “A NICE Way to Test Openflow Applications,” in

NSDI’12.
[32] M. Castro et al., “BASE: Using Abstraction to Improve Fault

Tolerance,” ACM Trans. Comput. Syst.
[33] ——, “Practical Byzantine Fault Tolerance and Proactive Recovery,”

ACM Trans. Comput. Syst.
[34] B. Chandrasekaran et al., “Tolerating SDN Application Failures with

LegoSDN,” in HotNets ’14.
[35] B.-G. Chun et al., “Diverse Replication for Single-machine

Byzantine-fault Tolerance,” in ATC’08.
[36] F. Cristian, “Understanding Fault-tolerant Distributed Systems,” Comm.

ACM, Feb. 1991.
[37] M. Dhawan et al., “Sphinx: Detecting Security Attacks in

Software-Defined Networks,” in NDSS’15.
[38] A. Guha et al., “Machine-verified Network Controllers,” in PLDI’13.
[39] A. Haeberlen et al., “Accountable Virtual Machines,” in OSDI’10.
[40] ——, “PeerReview: Practical Accountability for Distributed Systems,”

in SOSP’07.
[41] N. Handigol et al., “I Know What Your Packet Did Last Hop: Using

Packet Histories to Troubleshoot Networks,” in NSDI’14.
[42] S. Jain et al., “B4: Experience with a Globally-deployed Software

Defined Wan,” in SIGCOMM ’13.
[43] F. Junqueira et al., “Surviving Internet Catastrophes,” in ATC ’05.
[44] N. Katta et al., “Ravana: Controller Fault-Tolerance in

Software-Defined Networking,” in SOSR’15.
[45] P. Kazemian et al., “Header Space Analysis: Static Checking for

Networks,” in NSDI’12.

[46] ——, “Real Time Network Policy Checking Using Header Space
Analysis,” in NSDI’13.

[47] E. Keller et al., “Virtually Eliminating Router Bugs,” in CoNEXT ’09.
[48] A. Khurshid et al., “VeriFlow: Verifying Network-wide Invariants in

Real Time,” in NSDI’13.
[49] T. Koponen et al., “Network Virtualization in Multi-tenant

Datacenters,” in NSDI’14.
[50] H. Mai et al., “Debugging the Data Plane with Anteater,” in

SIGCOMM’11.
[51] R. Majumdar et al., “Kuai: A Model Checker for Software-defined

Networks,” in FMCAD’14.
[52] S. Matsumoto et al., “Fleet: Defending SDNs from Malicious

Administrators,” in HotSDN’14.
[53] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus

Networks,” SIGCOMM Comput. Commun. Rev., April 2008.
[54] M. Reitblatt et al., “FatTire: Declarative Fault Tolerance for

Software-defined Networks,” in HotSDN’13.
[55] C. Scott et al., “Troubleshooting Blackbox SDN Control Software

with Minimal Causal Sequences,” in SIGCOMM’14.
[56] D. Sethi et al., “Abstractions for model checking SDN controllers,” in

FMCAD’13.
[57] R. Soulé et al., “Merlin: A Language for Provisioning Network

Resources,” in CoNEXT’14.
[58] A. Wundsam et al., “OFRewind: Enabling Record and Replay

Troubleshooting for Networks,” in ATC’11.
[59] J. Yin et al., “Separating Agreement from Execution for Byzantine

Fault Tolerant Services,” SIGOPS Oper. Syst. Rev.

APPENDIX

(1) FLOW DELETION FAILURE. ODL reported a byzantine
bug [16], wherein with 50K flows in the MD-SAL data store,
the deletion of flow rules by an administrator failed, and the
controller locked up. Further attempts to restart the controller
failed with several exceptions. However, other reported ex-
periments with 150K flows worked. This fault is of type T1,
where the administrator uses REST APIs (an external trigger)
to initiate flow rule deletion. JURY can detect such faults using
cluster consistency, i.e., difference in the responses from the
primary and secondary controllers.
(2) LINK DETECTION INCONSISTENT. ONOS sometimes
fails to detect all links in a network, specially both before
and after a topology change. The number and type of links
found in each run is variable, and re-runs occasionally yield
different results. It was suspected that the issue was likely due
to threading conflicts [19]. The above fault is of type T1 and
can easily be detected via controller consistency.
(3) FLOW INSTANTIATION FAILURE. In ODL Helium,
when trying to deploy flow entries to a switch from a con-
troller application using restconf, the API returned success.
However, no FLOW_MOD messages were sent from controller and
no flows were installed on the switch [3]. The above fault is
of type T2, where the flow entry modified in the data store
was not sent out over the network. JURY can detect such
inconsistencies since secondary nodes would receive cache
updates, while no FLOW_MOD would be seen on the network.
(4) FLOW RULES STAY IN PENDING_ADD STATE. ONOS
reports flow rules in PENDING_ADD state with a switch for a
particular optical technology [6]. For a flow entry to go from
PENDING_ADD to ADDED, ONOS compares flow rules in its store
and flow entries from the switch. In case of any inconsistency,
the rules remain in PENDING_ADD state. This fault is of type T2
and JURY detects it using controller consistency.

